Actions for Scientific computing with Matlab
Scientific computing with Matlab / Dingyü Xue, YangQuan Chen
- Author
- Xue, Dingyü
- Published
- Boca Raton, FL : CRC Press, 2016.
- Edition
- Second edition.
- Physical Description
- xvii, 586 pages : illustrations ; 27 cm
- Additional Creators
- Chen, YangQuan, 1966-
- Contents
- Machine generated contents note: 1.1.Computer Solutions to Mathematics Problems -- 1.1.1.Why should we study computer mathematics language? -- 1.1.2.Analytical solutions versus numerical solutions -- 1.1.3.Mathematics software packages: an overview -- 1.1.4.Limitations of conventional computer languages -- 1.2.Summary of Computer Mathematics Languages -- 1.2.1.A brief historic review of MATLAB -- 1.2.2.Three widely used computer mathematics languages -- 1.2.3.Introduction to free scientific open-source softwares -- 1.3.Outline of the Book -- 1.3.1.The organization of the book -- 1.3.2.How to learn and use MATLAB -- 1.3.3.The three-phase solution methodology -- Exercises -- Bibliography -- 2.1.Essentials in MATLAB Programming -- 2.1.1.Variables and constants in MATLAB -- 2.1.2.Data structures -- 2.1.3.Basic statement structures of MATLAB -- 2.1.4.Colon expressions and sub-matrices extraction -- 2.2.Fundamental Mathematical Calculations -- 2.2.1.Algebraic operations of matrices -- 2.2.2.Logic operations of matrices -- 2.2.3.Relationship operations of matrices -- 2.2.4.Simplifications and presentations of analytical results -- 2.2.5.Basic number theory computations -- 2.3.Flow Control Structures of MATLAB Language -- 2.3.1.Loop control structures -- 2.3.2.Conditional control structures -- 2.3.3.Switch structure -- 2.3.4.Trial structure -- 2.4.Writing and Debugging MATLAB Functions -- 2.4.1.Basic structure of MATLAB functions -- 2.4.2.Programming of functions with variable numbers of arguments in inputs and outputs -- 2.4.3.Inline functions and anonymous functions -- 2.4.4.Pseudo code and source code protection -- 2.5.Two-dimensional Graphics -- 2.5.1.Basic statements of two-dimensional plotting -- 2.5.2.Plotting with multiple horizontal or vertical axes -- 2.5.3.Other two-dimensional plotting functions -- 2.5.4.Plots of implicit functions -- 2.5.5.Graphics decorations -- 2.5.6.Data file access with MATLAB -- 2.6.Three-dimensional Graphics -- 2.6.1.Plotting of three-dimensional curves -- 2.6.2.Plotting of three-dimensional surfaces -- 2.6.3.Viewpoint settings in 3D graphs -- 2.6.4.Surface plots of parametric equations -- 2.6.5.Spheres and cylinders -- 2.6.6.Drawing 2D and 3D contours -- 2.6.7.Drawing 3D implicit functions -- 2.7.Four-dimensional Visualization -- Exercises -- Bibliography -- 3.1.Analytical Solutions to Limit Problems -- 3.1.1.Limits of univariate functions -- 3.1.2.Limits of interval functions -- 3.1.3.Limits of multivariate functions -- 3.2.Analytical Solutions to Derivative Problems -- 3.2.1.Derivatives and high-order derivatives -- 3.2.2.Partial derivatives of multivariate functions -- 3.2.3.Jacobian matrix of multivariate functions -- 3.2.4.Hessian partial derivative matrix -- 3.2.5.Partial derivatives of implicit functions -- 3.2.6.Derivatives of parametric equations -- 3.2.7.Gradients, divergences and curls of fields -- 3.3.Analytical Solutions to Integral Problems -- 3.3.1.Indefinite integrals -- 3.3.2.Computing definite, infinite and improper integrals -- 3.3.3.Computing multiple Integrals -- 3.4.Series Expansions and Finite-term Series Approximations -- 3.4.1.Taylor series expansion -- 3.4.2.Fourier series expansion -- 3.5.Infinite Series and Products -- 3.5.1.Series -- 3.5.2.Product of sequences -- 3.5.3.Convergence test of infinite series -- 3.6.Path Integrals and Line Integrals -- 3.6.1.Path integrals -- 3.6.2.Line integrals -- 3.7.Surface Integrals -- 3.7.1.Scalar surface integrals -- 3.7.2.Vector surface integrals -- 3.8.Numerical Differentiation -- 3.8.1.Numerical differentiation algorithms -- 3.8.2.Central-point difference algorithm with MATLAB implementation -- 3.8.3.Gradient computations of functions with two variables -- 3.9.Numerical Integration Problems -- 3.9.1.Numerical integration from given data using trapezoidal method -- 3.9.2.Numerical integration of univariate functions -- 3.9.3.Numerical infinite integrals -- 3.9.4.Evaluating integral functions -- 3.9.5.Numerical solutions to double integrals -- 3.9.6.Numerical solutions to triple integrals -- 3.9.7.Multiple integral evaluations -- Exercises -- Bibliography -- 4.1.Inputting Special Matrices -- 4.1.1.Numerical matrix input -- 4.1.2.Defining symbolic matrices -- 4.1.3.Sparse matrix input -- 4.2.Fundamental Matrix Operations -- 4.2.1.Basic concepts and properties of matrices -- 4.2.2.Matrix inversion -- 4.2.3.Generalized matrix inverse -- 4.2.4.Matrix eigenvalue problems -- 4.3.Fundamental Matrix Transformations -- 4.3.1.Similarity transformations and orthogonal matrices -- 4.3.2.Triangular and Cholesky factorizations -- 4.3.3.Companion, diagonal and Jordan transformations -- 4.3.4.Singular value decompositions -- 4.4.Solving Matrix Equations -- 4.4.1.Solutions to linear algebraic equations -- 4.4.2.Solutions to Lyapunov equations -- 4.4.3.Solutions to Sylvester equations -- 4.4.4.Solutions of Diophantine equations -- 4.4.5.Solutions to Riccati equations -- 4.5.Nonlinear Functions and Matrix Function Evaluations -- 4.5.1.Element-by-element computations -- 4.5.2.Computations of matrix exponentials -- 4.5.3.Trigonometric functions of matrices -- 4.5.4.General matrix functions -- 4.5.5.Power of a matrix -- Exercises -- Bibliography -- 5.1.Laplace Transforms and Their Inverses -- 5.1.1.Definitions and properties -- 5.1.2.Computer solution to Laplace transform problems -- 5.1.3.Numerical solutions of Laplace transforms -- 5.2.Fourier Transforms and Their Inverses -- 5.2.1.Definitions and properties -- 5.2.2.Solving Fourier transform problems -- 5.2.3.Fourier sinusoidal and cosine transforms -- 5.2.4.Discrete Fourier sine, cosine transforms -- 5.2.5.Fast Fourier transforms -- 5.3.Other Integral Trasforms -- 5.3.1.Mellin transform -- 5.3.2.Hankel transform solutions -- 5.4.z Transforms and Their Inverses -- 5.4.1.Definitions and properties of z transforms and inverses -- 5.4.2.Computations of z transform -- 5.4.3.Bilateral z transforms -- 5.4.4.Numerical inverse z transform of rational functions -- 5.5.Essentials of Complex-valued Functions -- 5.5.1.Complex matrices and their manipulations -- 5.5.2.Mapping of complex-valued functions -- 5.5.3.Riemann surfaces -- 5.6.Solving Complex-valued Function Problems -- 5.6.1.Concept and computation of poles and residues -- 5.6.2.Partial fraction expansion for rational functions -- 5.6.3.Inverse Laplace transform using PFEs -- 5.6.4.Laurent series expansions -- 5.6.5.Computing closed-path integrals -- 5.7.Solutions of Difference Equations -- 5.7.1.Analytical solutions of linear difference equations -- 5.7.2.Numerical solutions of linear time varying difference equations -- 5.7.3.Solutions of linear time-invariant difference equations -- 5.7.4.Numerical solutions of nonlinear difference equations -- Exercises -- Bibliography -- 6.1.Nonlinear Algebraic Equations -- 6.1.1.Graphical method for solving nonlinear equations -- 6.1.2.Quasi-analytic solutions to polynomial-type equations -- 6.1.3.Numerical solutions to general nonlinear equations -- 6.2.Nonlinear Equations with Multiple Solutions -- 6.2.1.Numerical solutions -- 6.2.2.Finding high-precision solutions -- 6.2.3.Solutions of underdetermined equations -- 6.3.Unconstrained Optimization Problems -- 6.3.1.Analytical solutions and graphical solution methods -- 6.3.2.Solution of unconstrained optimization using MATLAB -- 6.3.3.Global minimum and local minima -- 6.3.4.Solving optimization problems with gradient information -- 6.4.Constrained Optimization Problems -- 6.4.1.Constraints and feasibility regions -- 6.4.2.Solving linear programming problems -- 6.4.3.Solving quadratic programming problems -- 6.4.4.Solving general nonlinear programming problems -- 6.5.Mixed Integer Programming Problems -- 6.5.1.Enumerate method in integer programming problems -- 6.5.2.Solutions of linear integer programming problems -- 6.5.3.Solutions of nonlinear integer programming problems -- 6.5.4.Solving binary programming problems -- 6.5.5.Assignment problems -- 6.6.Linear Matrix Inequalities -- 6.6.1.A general introduction to LMIs -- 6.6.2.Lyapunov inequalities -- 6.6.3.Classification of LMI problems -- 6.6.4.LMI problem solutions with MATLAB -- 6.6.5.Optimization of LMI problems by YALMIP Toolbox -- 6.7.Solutions of Multi-objective Programming Problems -- 6.7.1.Multi-objective optimization model -- 6.7.2.Least squares solutions of unconstrained multi-objective programming problems -- 6.7.3.Converting multi-objective problems into single-objective ones -- 6.7.4.Pareto front of multi-objective programming problems -- 6.7.5.Solutions of minimax problems -- 6.7.6.Solutions of multi-objective goal attainment problems -- 6.8.Dynamic Programming and Shortest Path Planning -- 6.8.1.Matrix representation of graphs -- 6.8.2.Optimal path planning of oriented graphs -- 6.8.3.Optimal path planning of undigraphs -- 6.8.4.Optimal path planning for graphs described by coordinates -- Exercises -- Bibliography -- 7.1.Analytical Solution Methods for Some Ordinary Differential Equations -- 7.1.1.Linear time-invariant ordinary differential equations -- 7.1.2.Analytical solution with MATLAB -- 7.1.3.Analytical solutions of linear state space equations -- 7.1.4.Analytical solutions to special nonlinear differential equations. -- 7.2.Numerical Solutions to Ordinary Differential Equations -- 7.2.1.Overview of numerical solution algorithms -- 7.2.2.Fixed-step Runge-Kutta algorithm and its MATLAB implementation -- 7.2.3.Numerical solution to first-order vector ODEs -- 7.3.Transforms to Standard Differential Equations -- 7.3.1.Manipulating a single high-order ODE -- 7.3.2.Manipulating multiple high-order ODEs -- 7.3.3.Validation of numerical solutions to ODEs -- 7.3.4.Transformation of differential matrix equations -- 7.4.Solutions to Special Ordinary Differential Equations -- 7.4.1.Solutions of stiff ordinary differential equations -- 7.4.2.Solutions of implicit differential equations -- 7.4.3.Solutions to differential algebraic equations -- and Contents note continued: 7.4.4.Solutions of switching differential equations -- 7.4.5.Solutions to linear stochastic differential equations -- 7.5.Solutions to Delay Differential Equations -- 7.5.1.Solutions of typical delay differential equations -- 7.5.2.Solutions of differential equations with variable delays -- 7.5.3.Solutions of neutral-type delay differential equations -- 7.6.Solving Boundary Value Problems -- 7.6.1.Shooting algorithm for linear equations -- 7.6.2.Boundary value problems of nonlinear equations -- 7.6.3.Solutions to general boundary value problems -- 7.7.Introduction to Partial Differential Equations -- 7.7.1.Solving a set of one-dimensional partial differential equations -- 7.7.2.Mathematical description to two-dimensional PDEs -- 7.7.3.The GUI for the PDE Toolbox - an introduction -- 7.8.Solving ODEs with Block Diagrams in Simulink -- 7.8.1.A brief introduction to Simulink -- 7.8.2.Simulink - relevant blocks -- 7.8.3.Using Simulink for modeling and simulation of ODEs -- Exercises -- Bibliography -- 8.1.Interpolation and Data Fitting -- 8.1.1.One-dimensional data interpolation -- 8.1.2.Definite integral evaluation from given samples -- 8.1.3.Two-dimensional grid data interpolation -- 8.1.4.Two-dimensional scattered data interpolation -- 8.1.5.Optimization problems based on scattered sample data -- 8.1.6.High-dimensional data interpolations -- 8.2.Spline Interpolation and Numerical Calculus -- 8.2.1.Spline interpolation in MATLAB -- 8.2.2.Numerical differentiation and integration with splines -- 8.3.Fitting Mathematical Models from Data -- 8.3.1.Polynomial fitting -- 8.3.2.Curve fitting by linear combination of basis functions -- 8.3.3.Least squares curve fitting -- 8.3.4.Least squares fitting of multivariate functions -- 8.4.Rational Function Approximations -- 8.4.1.Approximation by continued fraction expansions -- 8.4.2.Pade rational approximations -- 8.4.3.Special approximation polynomials -- 8.5.Special Functions and Their Plots -- 8.5.1.Gamma functions -- 8.5.2.Beta functions -- 8.5.3.Legendre functions -- 8.5.4.Bessel functions -- 8.5.5.Mittag-Leffler functions -- 8.6.Signal Analysis and Digital Signal Processing -- 8.6.1.Correlation analysis -- 8.6.2.Power spectral analysis -- 8.6.3.Filtering techniques and filter design -- Exercises -- Bibliography -- 9.1.Probability Distributions and Pseudorandom Numbers -- 9.1.1.Introduction to probability density functions and cumulative distribution functions -- 9.1.2.Probability density functions and cumulative distribution functions of commonly used distributions -- 9.1.3.Random numbers and pseudorandom numbers -- 9.2.Solving Probability Problems -- 9.2.1.Histogram and pie representation of discrete numbers -- 9.2.2.Probability computation of continuous functions -- 9.2.3.Monte Carlo solutions to mathematical problems -- 9.2.4.Simulation of random walk processes -- 9.3.Fundamental Statistical Analysis -- 9.3.1.Mean and variance of stochastic variables -- 9.3.2.Moments of stochastic variables -- 9.3.3.Covariance analysis of multivariate stochastic variables -- 9.3.4.Joint PDFs and CDFs of multivariate normal distributions -- 9.3.5.Outliers, quartiles and box plots -- 9.4.Statistical Estimations -- 9.4.1.Parametric estimation and interval estimation -- 9.4.2.Multivariate linear regression and interval estimation -- 9.4.3.Nonlinear least squares parametric and interval estimations -- 9.4.4.Maximum likelihood estimations -- 9.5.Statistical Hypothesis Tests -- 9.5.1.Concept and procedures for statistic hypothesis test -- 9.5.2.Hypothesis tests for distributions -- 9.6.Analysis of Variance -- 9.6.1.One-way ANOVA -- 9.6.2.Two-way ANOVA -- 9.6.3.n-way ANOVA -- 9.7.Principal Component Analysis -- Exercises -- Bibliography -- 10.1.Fuzzy Logic and Fuzzy Inference -- 10.1.1.MATLAB solutions to classical set problems -- 10.1.2.Fuzzy sets and membership functions -- 10.1.3.Fuzzy rules and fuzzy inference -- 10.2.Rough Set Theory and Its Applications -- 10.2.1.Introduction to rough set theory -- 10.2.2.Data processing problem solutions using rough sets -- 10.3.Neural Network and Applications in Data Fitting Problems -- 10.3.1.Fundamentals of neural networks -- 10.3.2.Feedforward neural network -- 10.3.3.Radial basis neural networks and applications -- 10.3.4.Graphical user interface for neural networks -- 10.4.Evolutionary Computing and Global Optimization Problem Solutions -- 10.4.1.Basic idea of genetic algorithms -- 10.4.2.Solutions to optimization problems with genetic algorithms -- 10.4.3.Solving constrained problems -- 10.4.4.Solving optimization problems with Global Optimization Toolbox -- 10.4.5.Towards accurate global minimum solutions -- 10.5.Wavelet Transform and Its Applications in Data Processing -- 10.5.1.Wavelet transform and waveforms of wavelet bases -- 10.5.2.Wavelet transform in signal processing problems -- 10.5.3.Graphical user interface in wavelets -- 10.6.Fractional-order Calculus -- 10.6.1.Definitions of fractional-order calculus -- 10.6.2.Properties and relationship of various fractional-order differentiation definitions -- 10.6.3.Evaluating fractional-order differentiation -- 10.6.4.Solving fractional-order differential equations -- 10.6.5.Block diagram based solutions of nonlinear fractional-order ordinary differential equations -- 10.6.6.Object-oriented modeling and analysis of linear fractional-order systems -- Exercises -- Bibliography.
- Subject(s)
- ISBN
- 9781498757775
1498757774 - Note
- A chapman & Hall Book.
- Bibliography Note
- Includes bibliographical references and index.
- Source of Acquisition
- Purchased with funds from the James and Joyce Gettys Libraries Endowment in the Math Library and in the School of Information Sciences and Technology; 2015
- Endowment Note
- James and Joyce Gettys Libraries Endowment in the Math Library and in the School of Information Sciences and Technology
View MARC record | catkey: 17288828