Modern optics / B. D. Guenther, Duke University, USA
- Author
- Guenther, B. D.
- Published
- Oxford ; New York, NY : Oxford University Press, 2015.
- Edition
- Second edition.
- Physical Description
- xvii, 718 pages : illustrations (some color) ; 26 cm
- Contents
- Machine generated contents note: 1.1.Introduction -- 1.2.Traveling Waves -- 1.3.Wave Equation -- 1.4.Transmission of Energy -- 1.5.Three Dimensions -- 1.6.Attenuation of Waves -- 1.7.Summary -- 1.8.Problems -- 2.1.Introduction -- 2.2.Maxwell's Equations -- 2.2.1.Gauss's Law -- 2.2.1.1.Gauss's (Coulomb's) Law for the Electric Field -- 2.2.1.2.Gauss's Law for the Magnetic Field -- 2.2.2.Faraday's Law -- 2.2.3.Ampere's Law (Law of Biot and Savart) -- 2.2.4.Constitutive Relations -- 2.3.Free Space -- 2.4.Wave Equation -- 2.5.Transverse Waves -- 2.6.Interdependence of E and B -- 2.7.Energy Density and Flow -- 2.8.Polarization -- 2.8.1.Polarization Ellipse -- 2.8.1.1.Linear Polarization -- 2.8.1.2.Circular Polarization -- 2.8.2.Stokes Parameters -- 2.8.3.Jones Vector -- 2.9.Propagation in a Conducting Medium -- 2.10.Summary -- 2.11.Problems -- References -- Appendix 2A: Vectors -- 2A.1.Products -- 2A.2.Derivatives -- Appendix 2B: Electromagnetic Units -- 3.1.Introduction -- 3.2.Reflection and Transmission at a Discontinuity -- 3.3.Laws of Reflection and Refraction -- 3.4.Fresnel's Formula -- 3.4.1.σ Case (Perpendicular Polarization) -- 3.4.2.π Case (Parallel Polarization) -- 3.5.Reflected and Transmitted Energy -- 3.6.Normal Incidence -- 3.7.Polarization by Reflection -- 3.8.Total Reflection -- 3.9.Reflection from a Conductor -- 3.10.Summary -- 3.11.Problems -- References -- 4.1.Introduction -- 4.2.Addition of Waves -- 4.2.1.Trigonometric Approach -- 4.2.2.Complex Approach -- 4.2.3.Vector Approach -- 4.3.Interference -- 4.4.Young's Interference -- 4.5.Dielectric Layer -- 4.5.1.Fizeau Fringes -- 4.5.2.Color Fringes -- 4.5.3.Haidinger's Fringes -- 4.5.4.Antireflection coating -- 4.5.5.Newton's Rings -- 4.6.Michelson Interferometer -- 4.7.Interference by Multiple Reflection -- 4.7.1.Fabry-Perot Interferometer -- 4.8.Summary -- 4.9.Problems -- References -- Appendix 4A: Multilayer Dielectric Coatings -- 4A.1.Vector Approach -- 4A.2.Matrix Approach -- 5.1.Introduction -- 5.2.Eikonal Equation -- 5.3.Fermat's Principle -- 5.4.Applications of Fermat's Principle -- 5.4.1.Law of Reflection -- 5.4.2.Law of Refraction -- 5.4.3.Propagation through an Optical System -- 5.5.Lens Design and Matrix Algebra -- 5.6.Geometrical Optics of Resonators -- 5.7.Guided Waves -- 5.7.1.End Coupling -- 5.7.2.Guided Modes -- 5.7.3.Propagation Vector Formalism -- 5.7.4.Solution for Asymmetric Guide -- 5.7.5.Solution for Symmetric Guide -- 5.7.6.Cutoff Condition -- 5.7.7.Coupling into Guided Wave Modes -- 5.7.7.1.Fiber Coupling -- 5.7.7.2.Evanescent Wave Coupling -- 5.8.Lagrangian Formulation of Optics -- 5.8.1.Hamilton's Principle -- 5.8.2.Rectilinear Propagation -- 5.8.3.Law of Refraction -- 5.9.Propagation in a Graded-Index Optical Fiber -- 5.10.Summary -- 5.11.Problems -- References -- Appendix 5A: The ABCD Matrix -- 5A.1.Thin-Lens Equation -- 5A.2.Optical Invariant -- 5A.3.Lensmaker's Equation -- 5A.4.Gaussian Formalism -- 5A.5.Newtonian Formalism -- 5A.6.Principal Planes -- 5A.6.1.Nodal Points -- 5A.7.Aperture Stop and Pupil -- Appendix 5B: Aberrations -- 5B.1.Wavefront Aberration Coefficients -- 5B.1.1.Optical Path Difference -- 5B.1.2.Transverse Ray Coefficients -- 5B.2.Spherical Aberrations -- 5B.2.1.Ray Intercept Plot -- 5B.3.Coma -- 5B.3.1.Optical Sine Theorem -- 5B.3.2.Spot Diagram -- 5B.4.Astigmatism -- 5B.5.Field Curvature -- 5B.6.Distortion -- 5B.7.Aberration Reduction -- 5B.7.1.Coddington Shape Factor -- 5B.7.2.Coddington Position Factor -- 6.1.Introduction -- 6.2.Fourier Series -- 6.2.1.DC Term -- 6.2.2.Cosine Series -- 6.2.3.Sine Series -- 6.2.4.Even and Odd Functions -- 6.2.5.Exponential Representation -- 6.3.Periodic Square Wave -- 6.4.The Fourier Integral -- 6.4.1.Dirichlet Conditions -- 6.4.2.Evaluation of the Fourier Transform -- 6.5.Rectangular Pulse -- 6.6.Pulse Modulation Wave Trains -- 6.7.Dirac Delta Function -- 6.8.Replication and Sampling -- 6.9.Correlation -- 6.10.Convolution Integrals -- 6.11.Linear System Theory -- 6.12.Fourier Transforms in Two Dimensions -- 6.13.Summary -- 6.14.Problems -- References -- Appendix 6A: Fourier Transform Properties -- 6A.1.Linearity -- 6A.2.Scaling -- 6A.3.Shifting -- 6A.4.Conjugation -- 6A.5.Differentiation -- 6A.6.Convolution -- 6A.7.Parseval's Theorem -- 6A.8.Correlation -- 6A.9.Common Fourier Transform Pairs -- 6A.10.Convolution Properties -- 7.1.Introduction -- 7.2.Stiff Strings -- 7.3.Group Velocity -- 7.4.Dispersion of Guided Waves -- 7.5.Material Dispersion -- 7.5.1.Conductive Gas -- 7.5.1.1.Plasma Frequency -- 7.5.2.Molecular Gas -- 7.5.3.Dense Dielectric -- 7.5.4.Metals -- 7.6.Plasmons and Polaritons -- 7.7.Lorenz-Lorentz Law -- 7.8.Signal Velocity, Superluminal Propagation -- 7.9.Summary -- 7.10.Problems -- References -- Appendix 7A: Chromatic Aberrations -- 8.1.Introduction -- 8.2.Photoelectric Mixing -- 8.3.Interference Spectroscopy -- 8.4.Fourier Transform Spectroscopy -- 8.4.1.Gaussian Spectral Distribution -- 8.5.Fringe Contrast and Coherence -- 8.6.Temporal Coherence Time -- 8.7.Autocorrelation Function -- 8.8.Spatial Coherence -- 8.8.1.A Line Source -- 8.8.2.van Cittert-Zernike Theorem -- 8.9.Spatial Coherence Length -- 8.10.Stellar Interferometer -- 8.11.Intensity Interferometry -- 8.12.Summary -- 8.13.Problems -- References -- 9.1.Introduction -- 9.2.Huygens' Principle -- 9.2.1.Rectilinear Propagation -- 9.2.2.Law of Reflection -- 9.2.3.Snell's Law -- 9.3.Fresnel Formulation -- 9.4.The Obliquity Factor -- 9.4.1.Approximate Solutions of the Huygens-Fresnel integral -- 9.5.Gaussian Beams -- 9.6.Higher-Order Gaussian Modes and Bessel Beams -- 9.6.1.Hermite-Gaussian Waves -- 9.6.2.Laguerre-Gaussian Waves -- 9.6.3.Bessel Beams -- 9.7.Beam Propagation -- 9.7.1.The ABCD Law -- 9.7.2.Thin Lens -- 9.7.3.Fabry-Perot Resonator -- 9.7.4.Laser Cavity -- 9.8.Summary -- 9.9.Problems -- References -- Appendix 9A: Fresnel-Kirchhoff Diffraction -- Appendix 9B: Rayleigh-Sommerfeld Formula -- 10.1.Introduction -- 10.2.Fraunhofer Diffraction -- 10.3.Fourier Transforms via a Lens -- 10.4.Plane Wave Representation -- 10.5.Diffraction by a Rectangular Aperture -- 10.6.Diffraction by a Circular Aperture -- 10.7.Array Theorem -- 10.8.N Rectangular Slits -- 10.8.1.Young's Double Slit -- 10.8.2.The Diffraction Grating -- 10.9.Summary -- 10.10.Problems -- References -- Appendix 10A: Abbe Theory and Optical Processing -- 10A.1.Introduction -- 10A.2.Abbe's Theory of Imaging -- 10A.3.Amplitude Spatial Filtering -- 10A.4.Apodization -- 10A.5.Phase Filtering -- 10A.6.Phase and Amplitude Filter -- Appendix 10B: Imaging -- 10B.1.Introduction -- 10B.2.Incoherent Imaging -- 10B.2.1.Resolution Criteria -- 10B.2.2.Optical Transfer Function -- 10B.2.3.Modulation Transfer Function -- 10B.3.Coherent Imaging -- 10B.4.Computational Imaging -- 11.1.Introduction -- 11.2.Fresnel Approximation -- 11.3.Rectangular Apertures -- 11.4.Fresnel Zones -- 11.4.1.Incident Plane Wave -- 11.5.Circular Aperture -- 11.5.1.Intensity near the Aperture -- 11.5.2.Off-Axis Intensity -- 11.6.Opaque Screen -- 11.7.Zone Plate -- 11.8.Pinhole Camera -- 11.9.Fermat's Principle -- 11.10.Comparison of Techniques -- 11.11.Summary -- 11.12.Problems -- References -- Appendix 11A: Babinet's Principle -- 11A.1.Fraunhofer Diffraction -- 11A.2.Fresnel Diffraction -- Appendix 11B: Fresnel Integral Solutions -- 11B.1.Table of Fresnel Integrals -- 11B.2.Cornu Spiral -- 12.1.Introduction -- 12.2.Holography -- 12.3.Holographic Recording -- 12.4.Off-Axis Holography -- 12.4.1.Recording -- 12.4.2.Development -- 12.4.3.Reconstruction -- 12.5.Spatial Spectrum of Off-Axis Holograms -- 12.6.Classification of Holograms -- 12.7.Diffraction Efficiency -- 12.8.Holography and Zone Plates -- 12.9.Resolution Requirements -- 12.10.Coherence Requirements -- 12.10.1.Temporal Coherence -- 12.10.2.Spatial Coherence -- 12.11.Photonic Crystals -- 12.11.1.Maxwell's Equations for Sinusoidal epsilon -- 12.12.The Bloch (or Floquet) Theorem -- 12.13.Multilayer Photonic Crystal -- 12.13.1.Photonic Crystal Defect -- 12.14.Numerical Techniques -- 12.15.Two-Dimensional Periodic Structure -- 12.16.Three-Dimensional Periodic Structure -- 12.17.Fabrication Defects -- 12.18.Natural Photonic Crystals -- 12.19.Summary -- 12.20.Problems -- References -- Appendix 12A: Phase Holograms -- Appendix 12B: VanderLugt Filter -- 13.1.Introduction -- 13.2.Dichroic Polarizers -- 13.2.1.Crystals -- 13.2.2.Wire Grids -- 13.2.3.Polaroid Sheet -- 13.3.Reflection Polarizers -- 13.3.1.Brewster's Angle Polarizers -- 13.3.2.Interference Polarizers -- 13.4.Polarization by Birefringence -- 13.5.Optical Indicatrix -- 13.6.Fresnel's Equation -- 13.6.1.Transverse Waves -- 13.6.2.Interdependence of D and H -- 13.6.3.Fresnel's Equation -- 13.7.Retarder -- 13.7.1.Quarter-Wave Plate -- 13.7.2.Compensator -- 13.7.3.Rhomb -- 13.8.Mueller Calculus -- 13.9.Jones Calculus -- 13.10.Optical Activity -- 13.11.Summary -- 13.12.Problems -- References -- Appendix 13A: Tensors -- 13A.1.Scalars -- 13A.2.Vectors -- 13A.3.Second-Rank Tensors -- 13A.4.Higher-Rank Tensors -- 13A.5.Coordinate Transformations -- 13A.6.Geometrical Representation -- 13A.7.Crystal Symmetry -- Appendix 13B: Poynting Vector in an Anisotropic Dielectric -- 13B.1.Ray Ellipsoid -- Appendix 13C: Normal Surfaces -- 13C.1.Biaxial Crystal -- 13C.2.Uniaxial Crystal -- 13C.3.Refraction in Crystals -- Appendix 13D: Ray Surfaces -- 14.1.Introduction -- 14.2.Electro-optic Effect -- 14.3.Electro-optic Indicatrix -- 14.3.1.Pockels Effect -- 14.3.2.Kerr Effect -- 14.4.Amplitude Modulation -- 14.4.1.Kerr Modulation -- 14.4.2.Pockels Modulation -- 14.5.Modulator Design -- 14.5.1.Kerr Modulator -- 14.5.2.Pockels Modulator -- 14.5.3.Longitudinal Modulator -- 14.5.4.Transverse Modulator -- 14.6.Magneto-optic Effect -- 14.6.1.Cotton-Mouton and Voigt Effects -- 14.7.Photoelastic Effect -- 14.8.Acousto-optics -- 14.8.1.Bragg Scattering -- 14.8.2.Raman-Nath Scattering -- 14.8.3.Acousto-optic Modulator -- 14.8.4.Spectrum Analyzer -- and Contents note continued: 14.8.5.Acousto-optic Beam Deflector -- 14.9.Summary -- 14.10.Problems -- References -- Appendix 14A: Pockels and Kerr Tensors -- Appendix 14B: Phenomenological Acousto-optic Theory -- 14B.1.Bragg Region -- 14B.2.Raman-Nath Region -- Appendix 14C: Acoustic Figure of Merit -- 15.1.Introduction -- 15.2.Nonlinear Polarization -- 15.3.Nonlinear Optical Coefficient -- 15.4.Symmetry Properties -- 15.5.Wave Propagation in a Nonlinear Medium -- 15.6.Conservation of Energy -- 15.6.1.Manley-Rowe Relation -- 15.7.Conservation of Momentum -- 15.7.1.Poynting Vector -- 15.7.2.Phase Matching -- 15.8.Second-Harmonic Generation -- 15.9.Methods of Phase Matching -- 15.9.1.Quasi-Phase Matching (QPM) -- 15.9.2.Total Internal Reflection -- 15.9.3.Dielectric Waveguide -- 15.9.4.Noncollinear Phase Matching -- 15.9.5.Birefringent Phase Matching -- 15.10.Phase Conjugation -- 15.11.Summary -- 15.12.Problems -- References -- Appendix 15A: Nonlinear Optical Medium -- 15A.1.Introduction -- 15A.2.Generalized Linear Theory -- 15A.3.Nonlinear Equation of Motion -- 15A.4.Perturbation Technique -- 15A.5.Second-Order Nonlinearity -- Appendix 15B: Miller's Rule -- Appendix 15C: Nonlinear Polarization in the 32 Point Group.
- Subject(s)
- ISBN
- 9780198738770 (hbk.)
0198738773 - Note
- AUTH: DUKE UNIVERSITY. TEXTBOOK--ADV. UNDERGRAD.
- Bibliography Note
- Includes bibliographical references and index.
- Source of Acquisition
- Purchased with funds from the Paterno Libraries Endowment; 2015
- Endowment Note
- Paterno Libraries Endowment
View MARC record | catkey: 17289253