Actions for A Satellite Borne Cadmium Sulfide Total Corpuscular Energy Detector
A Satellite Borne Cadmium Sulfide Total Corpuscular Energy Detector
- Author
- Freeman, John W.
- Published
- February 1961.
- Physical Description
- 1 electronic document
Online Version
- hdl.handle.net , Connect to this object online.
- Restrictions on Access
- Unclassified, Unlimited, Publicly available.
Free-to-read Unrestricted online access - Summary
- The properties of single crystals of cadmium sulfide as radiation detectors are described. It has been found possible to select crystals such that: (a) The ratio of increase of conductivity under irradiation to the rate of absorption of energy in the crystal is substantially independent of particle energy (over the examined ranges of 500 ev to 80 kev for electrons and 5 kev to 180 kev for protons) and of the magnitude of energy flux (over the range from.005 to 10 ergs/cm(sup 2 -sec); and (b) The above ration is substantially the same for protons, electrons, alpha particles, x-rays, and gamma-rays. For a driving voltage of 100 volts, typical crystal yield currents of 10(sup -7) to 10(sup- 6) amperes for each erg/cm(sup 2-sec) of energy absorbed by the crystal. The threshold of such crystal detectors (resulting from dark currents of the order of 10(sup 10 amp) is typically 10(sup -3) ergs/cm(sup 2- sec). For the selected crystals a response-temperature coefficient of -0.25% per degree centigrade is found for the temperature range -50 deg C to + 50 deg C. A description is given of a complete CdS total corpuscular energy detector for the study of geomagnetically trapped radiation by means of a satellite. The detector described has a dynamic range great than 10(sup 4), a solid angle of 10(exp -3) steradian, and a detection threshold of approximately 1 erg/cm(sup 2-sec-sterad). A similar detector employing a small magnet for the selective exclusion of electrons is also described. Noteworthy practical features of these detectors for satellite and space probe experiments are: (a) Use of bare crystals, without covering foils, in order to detect charged particles having energies as low as hundreds of electron volts. (b) Simplicity of electronic auxiliaries. (c) Compactness, lightweight and nechanical ruggedness. (d) Low electrical power requirements; and (e) Conversion of conduction current to the rate of a twostate relaxation oscillator in order to facilitate telemetric transmission of data. A pair of such detectors was flown as part of the s-46 satellite payload on March 23, 1960, but due to vehicular failure an orbit was not achieved and the operation of the CdS detectors was observed for only, six minutes of flight.
- Other Subject(s)
- Collection
- NASA Technical Reports Server (NTRS) Collection.
- Note
- Document ID: 20150020844.
- Terms of Use and Reproduction
- No Copyright.
View MARC record | catkey: 17530899