Actions for Control Circuits in Power Electronics [electronic resource] : Practical issues in design and implementation
Control Circuits in Power Electronics [electronic resource] : Practical issues in design and implementation / Castilla
- Published
- Stevenage : IET, 2016.
- Physical Description
- 1 online resource (464 pages)
- Additional Creators
- Castilla, Miguel
Access Online
- Series
- Contents
- Machine generated contents note: pt. I Analogue control circuits -- 1.PWM-based sliding mode control schemes for DC/DC power converters -- 1.1.Introduction -- 1.2.Basic sliding mode control theory -- 1.3.PWM-based SM control -- 1.4.PWM-based SM voltage control -- 1.5.PWM-based SM current control -- 1.6.Practical implementation and design issues -- 1.7.Conclusions -- References -- 2.Synthetic-ripple hysteretic controllers for DC/DC converters -- 2.1.Hysteretic controllers for DC/DC converters -- 2.2.Building blocks and non-idealities -- 2.2.1.Converter -- 2.2.2.Carrier generation circuit -- 2.2.3.Hysteretic controller -- 2.2.4.Voltage feedback -- 2.3.Synthetic carrier generation circuit -- 2.3.1.Passive filtering technique -- 2.3.2.Active filtering technique -- 2.4.Load current feedforward -- 2.5.Linear model development -- 2.5.1.Modelling an SRG -- 2.5.2.Modelling a hysteretic controller -- 2.6.Conclusions -- References -- 3.One-cycle controlled power inverters -- 3.1.Introduction -- 3.2.OCC: operating principle and applications overview -- 3.3.OCC inverters for PV applications -- 3.3.1.OCC for single-phase PV inverters -- 3.3.2.OCC for three-phase PV inverters -- 3.4.OCC stability analysis by means of Poincare maps -- 3.5.Conclusions -- References -- pt. II Digital control circuits -- 4.Digital PWM control of high-frequency DC-DC switched-mode power converters -- 4.1.The digital control loop -- 4.1.1.Timing diagram and controller operation -- 4.1.2.Loop delays -- 4.2.Dynamic modeling and system-level compensator design -- 4.2.1.Loop small-signal modeling -- 4.2.2.Compensator design and discretization -- 4.3.Quantization effects and limit cycling -- 4.3.1.A/D quantization -- 4.3.2.Modulation quantization -- 4.3.3.No-limit-cycling design criteria -- 4.4.Controller implementation -- 4.4.1.Analog-to-digital converter -- 4.4.2.Digital compensator -- 4.4.3.Digital MPM -- 4.5.Summary of Key Points -- References -- 5.Microcontroller-based electronic ballasts for high-intensity discharge lamps -- 5.1.HID lamp operation principles and modelling -- 5.1.1.HID lamps -- 5.1.2.HID lamps operating requirements -- 5.1.3.HID lamps modelling -- 5.2.Electronic ballasts for HID lamps -- 5.2.1.AC-operated electronic ballasts -- 5.2.2.DC-operated electronic ballasts -- 5.3.Digital control applied to electronic ballasts -- 5.3.1.General control strategy applied to HID lamps -- 5.3.2.PFC converter -- 5.3.3.DC-DC converter -- 5.3.4.Low-frequency inverter -- 5.3.5.Igniter -- 5.3.6.Protections -- 5.4.Practical example -- 5.4.1.HID lamp ballast -- 5.4.2.Microcontroller PIC16F684 -- 5.4.3.Control strategy -- 5.4.4.Lamp starting -- 5.4.5.Warm-up process -- 5.4.6.Steady state -- 5.4.7.Protections -- 5.4.8.Experimental results -- 5.5.Summary -- References -- 6.FPGA-based controllers for direct sliding mode control of PWM boost rectifiers -- 6.1.Introduction -- 6.2.Sliding mode control: theory and application for power converters control -- 6.3.Direct sliding mode control for single-phase PWM rectifier -- 6.3.1.Single-phase PWM rectifier model -- 6.3.2.Steady-state operation limits -- 6.3.3.Synthesis of the direct sliding mode control -- 6.3.4.FPGA-based controller -- 6.4.Direct sliding mode control for three-phase PWM rectifier -- 6.4.1.Three-phase PWM rectifier model -- 6.4.2.Steady-state operation limits -- 6.4.3.Synthesis of the direct sliding mode control -- 6.4.4.FPGA-based controller -- 6.5.Conclusion -- References -- 7.DSP controllers for three-phase unity-power-factor rectifiers -- 7.1.Introduction -- 7.2.DSP boards for power converters control -- 7.3.Topologies for three-phase unity-power-factor rectifiers -- 7.3.1.Three-phase rectifiers: VSR and CSR -- 7.3.2.Novel topologies: Y- or Δ-switch rectifier and VIENNA rectifier -- 7.4.Phase-locked loops algorithms -- 7.4.1.Implementation of PLL algorithms with fixed sampling time in three-phase systems -- 7.4.2.Implementation of single-phase PLLs with fixed sampling time -- 7.4.3.Implementation of PLL algorithms with varying sampling time in three-phase systems -- 7.4.4.Implementation of single-phase PLLs with varying sampling time -- 7.4.5.Comments -- 7.5.Control algorithms for UPF rectifiers -- 7.5.1.dq frame-based control -- 7.5.2.pq theory-based control -- 7.5.3.Predictive control -- 7.6.Conclusions -- References -- 8.DSP controllers for grid-connected three-phase voltage-sourced inverters -- 8.1.Introduction -- 8.2.Modeling and control structures of grid-connected three-phase voltage-sourced inverters (VSIs) -- 8.2.1.Modeling in an orthogonal stationary reference frame (StatRF) -- 8.2.2.Modeling in an orthogonal synchronous reference frame (SRF) -- 8.2.3.Control of a grid-connected PV inverter with LCL filter -- 8.3.DSP control of a grid-connected PV inverter with LCL filter in the StatRF -- 8.3.1.Design and programming of the current loops in the StatRF -- 8.3.2.Design and programming of the voltage loop in the StatRF -- 8.4.DSP control of a grid-connected PV inverter with LCL filter in the SRF -- 8.4.1.Design and programming of the current loops in the SRF -- 8.4.2.Design and programming of the voltage loop in the SRF -- 8.5.Experimental results -- 8.6.Conclusions -- Acknowledgment -- References -- 9.FPGA-DSP controllers for DC-DC converters in renewable energy applications -- 9.1.Introduction -- 9.2.FPGA and DSP-based multi-functional digital controller -- 9.2.1.Controller platform -- 9.2.2.DSP--FPGA synchronization -- 9.2.3.Explanation of function blocks in the FPGA device -- 9.2.4.Implementation of a touch panel -- 9.3.Development of new topologies and control schemes for DC-DC converters -- 9.3.1.High step-up passive clamp circuits -- 9.3.2.Three-phase interleaved high step-up converters -- 9.4.Application of the new topologies for PV installations -- 9.5.Conclusions -- References -- 10.Multilevel converters: topologies, modulation and control -- 10.1.Introduction -- 10.2.Multilevel converter topologies -- 10.2.1.Diode-clamped converter (DCC) -- 10.2.2.Flying capacitor (FC) converter -- 10.2.3.Cascaded H-bridge multilevel converter -- 10.2.4.Modular multilevel converter -- 10.3.Modulation techniques for multilevel converters -- 10.3.1.Low switching frequency modulation techniques -- 10.3.2.High switching frequency modulation techniques -- 10.3.3.MMC: circulating current control and capacitor voltage balance -- 10.3.4.Common and differential circuits -- 10.4.Digital controller implementations for multilevel converters -- 10.4.1.Centralised digital controllers for converters with a low number of levels -- 10.4.2.Distributed digital controllers for converters with large number of levels -- 10.5.Conclusions -- References -- pt. III New trends in control circuits for power electronics -- 11.State-of-the-art intelligent gate drivers for IGBT power modules -- monitoring, control and management at the heart of power converters -- 11.1.Introduction to gate drivers -- 11.1.1.Power electronic systems, IGBTs and gate driver units -- 11.1.2.Sensing and control systems -- 11.2.Innovative gate driver and system architecture -- 11.2.1.System integration -- 11.2.2.High temperature operation -- 11.3.Integrated data acquisition methods -- 11.3.1.Voltage measurement -- 11.3.2.Current measurement -- 11.3.3.Temperature measurement -- 11.4.Intelligent control -- 11.4.1.Condition monitoring -- 11.4.2.Control of switching characteristics -- 11.4.3.Series connection -- 11.4.4.Parallel connection -- 11.5.Summary -- Acknowledgements -- References -- 12.Control of integrated switched capacitor power converters -- 12.1.Introduction -- 12.2.Charge pump design considerations -- 12.3.Control schemes -- 12.3.1.Two-stage regulation strategies -- 12.3.2.Reconfiguration schemes -- 12.3.3.Pulse frequency modulation and pulse control schemes -- 12.3.4.Interleaving multiphase regulation -- 12.4.Conclusions -- References -- 13.DSP-based natural frame control schemes for three-phase unity power factor rectifiers -- 13.1.Introduction -- 13.2.Physical model of the power converter -- 13.3.Conventional sliding mode control in three-phase converters -- 13.4.Decoupled model of the power converter -- 13.4.1.Decoupled model derivation -- 13.4.2.Controllability and observability of the proposed model -- 13.5.Sliding mode control scheme based on estimators -- 13.5.1.Discrete decoupled model -- 13.5.2.KF algorithm -- 13.5.3.Practical considerations: selection of Q and R matrices -- 13.5.4.Practical considerations: computational load reduction -- 13.6.Sliding mode control of a UPFR -- 13.6.1.Inner control loop -- 13.6.2.Outer control loop -- 13.7.Sliding mode control operating at fixed switching frequency -- 13.7.1.Variable hysteresis band calculation -- 13.7.2.Switching decision algorithm -- 13.7.3.Switching frequency spectrums -- 13.8.Experimental results -- 13.9.Summary -- References -- 14.Dual-core DSP for control and communication in AC microgrids -- 14.1.Introduction -- 14.2.Control in AC microgrids -- 14.2.1.Microgrid architecture -- 14.2.2.Power converters in AC microgrids -- 14.2.3.Microgrid scenarios -- 14.3.Control of grid-forming power converters -- 14.3.1.Primary control -- 14.3.2.Secondary control -- 14.3.3.Tertiary control -- 14.4.Communication in AC microgrids -- 14.4.1.Communication protocols -- 14.4.2.Example of a low-scale laboratory microgrid -- 14.5.Dual-core DSP for control and communication -- 14.5.1.Control and communication in DSP technology -- 14.5.2.Description of the dual-core system architecture -- 14.5.3.Control functions implemented in the C28 core -- 14.5.4.Communication procedures implemented in the M3 core -- 14.5.5.Extension to other control and communication schemes in AC microgrids -- 14.6.Experimental tests in the low-scale laboratory microgrid -- 14.6.1.Performance evaluation of the primary control -- 14.6.2.Performance evaluation of the secondary control -- 14.6.3.Effects of packet loss in the communication network -- 14.7.Conclusions -- References -- and Contents note continued: 15.Use of computational intelligence for designing power electronics converters -- 15.1.Introduction -- 15.2.Formulation of fitness function -- 15.2.1.Type-one fitness function -- 15.2.2.Type-two fitness function -- 15.2.3.Fitness function for the PCS -- 15.2.4.Fitness function for FN -- 15.3.Description of GA -- 15.4.Description of ACO -- 15.4.1.Data structure -- 15.4.2.Procedures -- 15.5.Design examples and implementation issues -- 15.5.1.Design objectives -- 15.5.2.Design using GA -- 15.5.3.Design using ACO -- 15.6.Summary -- References.
- Summary
- Control circuits are a key element in the operation and performance of power electronics converters. This book describes practical issues related to the design and implementation of these control circuits, with a focus on the presentation of the state-of-the-art control solutions, including circuit technology, design techniques, and implementation issues. Topics covered include PWM-based sliding mode control schemes for DC-DC power converters; synthetic-ripple hysteretic controllers for DC/DC converters; one-cycle controlled single phase power inverters; digital PWM control of high-frequency DC-DC switched-mode power converters; microcontroller-based electronic ballasts for high-intensity-discharge lamps; FPGA-based controllers for direct sliding mode control of PWM boost rectifiers; DSP controllers for three-phase unity-power-factor rectifiers and voltage-sourced inverters; FPGADSP controllers for DC-DC converters in renewable energy applications; topologies, modulation and control of multilevel converters; state-of-the-art intelligent gate drivers for IGBT power modules; control of integrated switched capacitor power converters; DSP-based natural frame control schemes for three-phase unity-power-factor rectifiers; dual-core DSP for control and communication in AC microgrids; and the use of computational intelligence for designing power electronics converters. Control Circuits in Power Electronics is an essential reading for researchers, advanced students and practicing design engineers working in power electronics.
- Subject(s)
- Other Subject(s)
- ISBN
- 9781849198233
View MARC record | catkey: 17951630