Actions for Applied superconductivity : handbook on devices and applications
Applied superconductivity : handbook on devices and applications / edited by Paul Seidel
- Published
- Weinheim : Wiley-VCH, [2015]
- Physical Description
- 1 online resource (2 volumes).
- Additional Creators
- Seidel, P.
Access Online
- Series
- Contents
- Machine generated contents note: 1.Fundamentals -- 1.1.Superconductivity -- 1.1.1.Basic Properties and Parameters of Superconductors / Reinhold Kleiner -- 1.1.1.1.Superconducting Transition and Loss of DC Resistance -- 1.1.1.2.Ideal Diamagnetism, Flux Quantization, and Critical Fields -- 1.1.1.3.The Origin of Flux Quantization, London Penetration Depth and Ginzburg--Landau Coherence Length -- 1.1.1.4.Critical Currents -- References -- 1.1.2.Review on Superconducting Materials / Gertrud Zwicknagl -- 1.1.2.1.Introduction -- 1.1.2.2.Cuprate High-Temperature Superconductors -- 1.1.2.3.Other Oxide Superconductors -- 1.1.2.4.Iron-Based Superconductors -- 1.1.2.5.Heavy Fermion Superconductors -- 1.1.2.6.Organic and Other Carbon-Based Superconductors -- 1.1.2.7.Borides and Borocarbides -- References -- 1.2.Main Related Effects -- 1.2.1.Proximity Effect / Mikhail Belogolovskii -- 1.2.1.1.Introduction -- 1.2.1.2.Metal--Insulator Contact -- 1.2.1.3.Normal Metal--Superconductor Contact -- 1.2.1.4.Ferromagnetic Metal--Superconductor Contact -- 1.2.1.5.New Perspectives and New Challenges -- 1.2.1.6.Summary -- References -- 1.2.2.Tunneling and Superconductivity / Steven T. Ruggiero -- 1.2.2.1.Introduction -- 1.2.2.2.Normal/Insulator/Normal Tunnel Junctions -- 1.2.2.3.Normal/Insulator/Superconducting Tunnel Junctions -- 1.2.2.4.Superconductor/Insulator/Superconducting Tunnel Junctions -- 1.2.2.5.Superconducting Quantum Interference Devices (SQUIDs) -- 1.2.2.6.Phonon Structure -- 1.2.2.7.Geometrical Resonances -- 1.2.2.8.Scanning Tunneling Microscopy -- 1.2.2.9.Charging Effects -- References -- 1.2.3.Flux Pinning / Stuart C. Wimbush -- 1.2.3.1.Introduction -- 1.2.3.2.Flux Lines, Flux Motion, and Dissipation -- 1.2.3.3.Sources of Flux Pinning -- 1.2.3.4.Flux Pinning in Technological Superconductors -- 1.2.3.5.Experimental Determination of Pinning Forces -- 1.2.3.6.Regimes of Flux Motion -- 1.2.3.7.Limitations on Core Pinning Efficacy -- 1.2.3.8.Magnetic Pinning of Flux Lines -- 1.2.3.9.Flux Pinning Anisotropy -- 1.2.3.10.Maximum Entropy Treatment of Flux Pinning -- References -- 1.2.4.AC Losses and Numerical Modeling of Superconductors / Frederic Sirois -- 1.2.4.1.Introduction -- 1.2.4.2.General Features of AC Loss Characteristics -- 1.2.4.3.Measuring AC Losses -- 1.2.4.3.1.Transport Losses -- 1.2.4.3.2.Magnetization Losses -- 1.2.4.3.3.Combination of Transport and Magnetization AC Losses -- 1.2.4.4.Computing AC Losses -- 1.2.4.4.1.Analytical Computation -- 1.2.4.4.2.Numerical Computation -- References -- 2.Superconducting Materials -- 2.1.Low-Temperature Superconductors -- 2.1.1.Metals, Alloys, and Intermetallic Compounds / Klaus Schlenga -- 2.1.1.1.Introduction -- 2.1.1.2.Type I and Type II Superconductor Elements and High-Field Alloys -- 2.1.1.2.1.Fundamental Superconductor Properties -- 2.1.1.2.2.Elemental Superconductors and Their Applications -- 2.1.1.2.3.The Effect of Alloying -- 2.1.1.3.Superconducting Intermetallic Compounds -- 2.1.1.4.Pinning in Hard Type II Superconductors -- 2.1.1.5.Design Principles of Technical Conductors -- 2.1.1.5.1.Electromagnetic Considerations -- 2.1.1.5.2.Mechanical Properties -- 2.1.1.5.3.Co-Workability and Compatibility of Wire Components -- 2.1.1.5.4.Cost Aspects -- 2.1.1.6.Wire Manufacturing Routes and Properties -- 2.1.1.6.1.NbTi Wires -- 2.1.1.6.2.Nb3Sn -- 2.1.1.7.Built-Up and Cabled Conductors -- 2.1.1.7.1.Wire-in-Channel (WiC) -- 2.1.1.7.2.Cabled Conductors -- 2.1.1.8.Concluding Remarks -- Acknowledgments -- References -- 2.1.2.Magnesium Diboride / Matteo Tropeano -- 2.1.2.1.Introduction -- 2.1.2.2.Intrinsic and Extrinsic Properties of MgB2 -- 2.1.2.3.Sample Preparation -- 2.1.2.3.1.MgB2 Phase Diagram and Polycrystals Synthesis -- 2.1.2.3.2.MgB2 Single Crystals -- 2.1.2.3.3.MgB2 Thin Films -- 2.1.2.4.Applications of MgB2 -- 2.1.2.4.1.Wires and Tapes -- 2.1.2.4.2.Electronic Applications -- 2.1.2.5.Summary and Outlook -- References -- 2.2.High-Temperature Superconductors -- 2.2.1.Cuprate High-Temperature Superconductors / Thomas Wolf -- 2.2.1.1.Introduction -- 2.2.1.2.Structural Aspects -- 2.2.1.3.Metallurgical Aspects -- 2.2.1.4.Structure and Tc -- 2.2.1.5.Superconductive Coupling -- References -- 2.2.2.Iron-Based Superconductors: Materials Aspects for Applications / Marina Putti -- 2.2.2.1.Introduction -- 2.2.2.2.General Aspects of Fe-Based Superconductors -- 2.2.2.3.Material Preparation -- 2.2.2.4.Superconducting Properties -- 2.2.2.4.1.Critical Temperature Tc -- 2.2.2.4.2.Critical Fields and Characteristic Lengths -- 2.2.2.4.3.Critical Current Density Jc -- 2.2.2.5.Critical Current Pinning -- 2.2.2.6.Grain Boundaries -- 2.2.2.7.Wires and Tapes -- 2.2.2.8.Coated Conductors -- 2.2.2.9.Electronic Applications -- 2.2.2.10.Summary -- References -- 3.Technology, Preparation, and Characterization -- 3.1.Bulk Materials -- 3.1.1.Preparation of Bulk and Textured Superconductors / Frank N. Werfel -- 3.1.1.1.Introduction -- 3.1.1.2.Melt Processed REBCO -- 3.1.1.2.1.Process Steps -- 3.1.1.2.2.Melt Processing Thermodynamics -- 3.1.1.2.3.Powder Compacting -- 3.1.1.2.4.Texture Process -- 3.1.1.2.5.Single Grain Fabrication -- 3.1.1.2.6.Mechanical Properties -- 3.1.1.2.7.Doping Strategy -- 3.1.1.3.Characterization -- 3.1.1.3.1.Electromagnetic Force -- 3.1.1.3.2.Magnetization and Field Mapping Technique of Bulk Superconductors -- 3.1.1.3.3.Trapped Field Magnetic Flux Density -- 3.1.1.3.4.Multiseeded Bulk Characterization -- 3.1.1.3.5.Comparison of the REBCO Bulk Materials -- References -- 3.1.2.Single crystal growth of the high temperature superconducting cuprates / Andreas Erb -- 3.1.2.1.General Problems in the Crystal Growth of the High Tc Cuprate Superconductors -- 3.1.2.2.YBa2Cu3O7-δ, YBa2Cu4O8, and REBa2Cu3O7-δ (RE, Rare Earth Element) -- 3.1.2.3.The 214-Compounds La2-xSrxCuO4, Nd2-xCexCuO4, and Pr2-xCexCuO4 -- 3.1.2.4.Conclusions -- References -- 3.1.3.Properties of Bulk Materials / Wolf-Rudiger Canders -- 3.1.3.1.Irreversibility Fields of Bulk High-Tc Superconductors -- 3.1.3.2.Vortex Matter Phase Diagram of Bulk YBCO in an Extended Field Range up to 40 T -- 3.1.3.3.Critical Current Density -- 3.1.3.4.Flux Creep in Bulk YBCO -- 3.1.3.4.1.Flux Creep in HTS -- 3.1.3.4.2.Reduction of Flux Creep -- 3.1.3.5.Selected Properties of Bulk YBCO -- 3.1.3.5.1.Mechanical Properties -- 3.1.3.5.2.Thermodynamic and Thermal Properties -- References -- 3.2.Thin Films and Multilayers -- 3.2.1.Thin Film Deposition / Roger Wordenweber -- 3.2.1.1.Introduction -- 3.2.1.1.1.Material Requirements -- 3.2.1.1.2.Substrate Requirements -- 3.2.1.2.Deposition Techniques -- 3.2.1.2.1.PVD Techniques -- 3.2.1.2.2.CVD Technologies -- 3.2.1.2.3.CSD Techniques -- 3.2.1.3.HTS Film Growth and Characterization -- 3.2.1.3.1.Nucleation and Phase Formation -- 3.2.1.3.2.Heteroepitaxial Growth, Stress, and Defects -- 3.2.1.4.Concluding Remarks -- Acknowledgment -- References -- 3.3.Josephson Junctions and Circuits -- 3.3.1.LTS Josephson Junctions and Circuits / Gregor Oelsner -- 3.3.1.1.Introduction -- 3.3.1.2.Junction Characterization -- 3.3.1.3.Nb-Al/AlOx-Nb Junction Technology -- 3.3.1.3.1.General Aspects -- 3.3.1.3.2.Basic Processes of the Nb - Al/AlOx -- Nb Technology -- 3.3.1.4.Circuits, Applications, and Resulting Requirements for Josephson Junctions -- 3.3.1.4.1.Josephson Voltage Standard -- 3.3.1.4.2.Superconducting Tunnel Junction -- 3.3.1.4.3.SIS Mixer -- 3.3.1.4.4.SQUID -- 3.3.1.4.5.Qubit -- 3.3.1.4.6.Mixed-Signal Circuit -- 3.3.1.4.7.RSFQ Digital Electronics -- References -- 3.3.2.HTS Josephson Junctions / Keiichi Tanabe -- 3.3.2.1.Introduction -- 3.3.2.2.Various Types of Junctions -- 3.3.2.3.Grain-Boundary Junctions -- 3.3.2.3.1.Bicrystal Junctions -- 3.3.2.3.2.Step-Edge Junctions -- 3.3.2.4.Ramp-Edge Junctions -- 3.3.2.5.Other Types of Junctions -- 3.3.2.6.Summary and Outlook -- References -- 3.4.Wires and Tapes -- 3.4.1.Powder-in-Tube Superconducting Wires: Fabrication, Properties, Applications, and Challenges / Eric Hellstrom -- 3.4.1.1.Overview of Powder-in-Tube (PIT) Superconducting Wires -- 3.4.1.1.1.Introduction -- 3.4.1.1.2.General Comments about PIT Wire Manufacture -- 3.4.1.2.Manufacturing, Heat Treatment, and Superconducting Performance of PIT Wires -- 3.4.1.2.1.Bi2Sr2CaCu2Ox (Bi-2212) Round Wire -- 3.4.1.2.2.(Bi, Pb)2Sr2Ca2Cu3Oc (Bi-2223) Tapes -- 3.4.1.2.3.Nb3Sn -- 3.4.1.2.4.MgB2 -- 3.4.1.2.5.Iron-Based Superconductors (FBS) -- 3.4.1.3.Strain Sensitivity of PIT Superconductor Wires -- 3.4.1.4.Successful Applications Using PIT Wires, Remaining Challenges, and PIT Wires in the Future -- Acknowledgments -- References -- 3.4.2.YBCO-Coated Conductors / Claudia Cantoni -- 3.4.2.1.Introduction -- 3.4.2.2.RABiTS and IBAD Technology -- 3.4.2.3.Simplified IBAD MgO Template Based on Chemical Solution Processed Al2O3 -- 3.4.2.4.Current Status of 2G HTS Wires -- 3.4.2.5.Future Outlook -- Acknowledgments -- References -- 3.5.Cooling -- 3.5.1.Fluid Cooling / Cesar Luongo -- 3.5.1.1.Introduction -- 3.5.1.2.Bath Cooling -- 3.5.1.2.1.Principle -- 3.5.1.2.2.Heat Removal in a Bath -- 3.5.1.2.3.Heat Transfer from a Solid Surface to a Bath -- 3.5.1.3.Internal Cooling -- 3.5.1.3.1.Heat Removal from an Internally Cooled Loop -- 3.5.1.3.2.Mass Flow and Circulator Mechanisms -- 3.5.1.3.3.Heat Transfer in Internal Flows -- 3.5.1.3.4.Helium Expulsion -- 3.5.1.3.5.Hell Cooling -- References -- 3.5.2.Cryocoolers / Gunar Schroeder -- 3.5.2.1.Motivation -- 3.5.2.1.1.The Principle of "Invisible" Cryogenics -- 3.5.2.1.2.Pros and Cons -- 3.5.2.2.Classical Cryocoolers -- 3.5.2.2.1.Stirling Cryocoolers -- 3.5.2.2.2.Gifford--McMahon Cryocoolers -- 3.5.2.3.Special Types of Cryocoolers -- 3.5.2.3.1.Pulse Tube Cryocoolers -- 3.5.2.3.2.Mixture Joule--Thomson Cryocoolers -- References -- 3.5.3."Cryogen-Free" Cooling / Andreas Kade -- 3.5.3.1.Motivation and Basic Configuration -- 3.5.3.1.1.Motivation -- 3.5.3.1.2.Basic Configuration -- 3.5.3.2.Heat Transfer Systems -- 3.5.3.2.1.Heat Conduction -- 3.5.3.2.2.Thermosiphon -- and Contents note continued: 3.5.3.2.3.Two-Phase Tubes -- 3.5.3.2.4.Heat Pipes -- 3.5.3.2.5.Circulations -- 3.5.3.3.Thermal Interceptors -- 3.5.3.3.1.Mechanically Actuated Switches -- 3.5.3.3.2.Thermal Dilatation Switches -- 3.5.3.3.3.Gas Gap Switches -- References -- 4.Superconducting Magnets -- 4.1.Bulk Superconducting Magnets for Bearings and Levitation / John R. Hull -- 4.1.1.Introduction -- 4.1.2.Understanding Levitation with Bulk Superconductors -- 4.1.2.1.Simplified Model: Double-Image Dipole -- 4.1.2.2.Magnetomechanical Stiffness -- 4.1.2.3.More Advanced Models -- 4.1.3.Rotational Loss -- 4.1.3.1.Hysteresis Loss -- 4.1.3.2.High-Speed Loss -- 4.1.4.A Rotor Dynamic Issue -- 4.1.5.Practical Bearing Considerations -- 4.1.6.Applications -- References -- 4.2.Fundamentals of Superconducting Magnets / Martin N. Wilson -- 4.2.1.Windings to Produce Different Field Shapes -- 4.2.2.Current Supply -- 4.2.3.Load Lines, Degradation, and Training -- 4.2.4.Cryogenic Stabilization -- 4.2.5.Mechanical Disturbances and Minimum Quench Energy -- 4.2.6.Screening Currents and the Critical State Model -- 4.2.7.Magnetization and Flux Jumping -- 4.2.8.Filamentary Wires and Cables -- 4.2.9.AC Losses -- 4.2.10.Quenching and Protection -- References -- 4.3.Magnets for Particle Accelerators and Colliders / Lucio Rossi -- 4.3.1.Introduction -- 4.3.2.Accelerators, Colliders, and Role of Superconducting Magnets -- 4.3.2.1.Magnet Functions and Type -- 4.3.2.2.Transverse Fields -- 4.3.2.3.Dipoles and Relation to Beam Energy -- 4.3.2.4.Quadrupoles and Focusing -- 4.3.2.5.Higher Order Multipoles -- 4.3.3.Magnetic Design -- 4.3.3.1.General -- 4.3.3.2.Current Density -- 4.3.3.3.Field Shape -- 4.3.3.4.Cos θ Coil -- 4.3.3.5.Other Coil Shapes: Block, Canted, Super-Ferric, Transmission line -- 4.3.4.Mechanical Design -- 4.3.4.1.Collars and Cos θ -- 4.3.4.2.Bladders and Keys -- 4.3.5.Margins, Stability, Training, and Protection -- 4.3.5.1.Margins and Stability -- 4.3.5.2.Training -- 4.3.5.3.Protection -- 4.3.6.Field Quality -- 4.3.7.Fast-Cycled Synchrotrons -- Acknowledgments -- References -- 4.4.Superconducting Detector Magnets for Particle Physics / Michael A. Green -- 4.4.1.The Development of Detector Solenoids -- 4.4.1.1.Early Superconducting Detector Magnets -- 4.4.1.2.Low Mass Thin Detector Magnets -- 4.4.2.LHC Detector Magnets for the ATLAS, CMS, and ALICE Experiments -- 4.4.2.1.Magnets for the ATLAS Detector -- 4.4.2.1.1.The ATLAS Central Solenoid -- 4.4.2.1.2.The ATLAS Endcap Toroids -- 4.4.2.1.3.The ATLAS Barrel Toroid -- 4.4.2.2.The CMS Detector Magnet -- 4.4.3.The Future of Detector Magnets for Particle Physics -- 4.4.4.The Defining Parameters for Thin Solenoids -- 4.4.5.Thin Detector Solenoid Design Criteria -- 4.4.6.Magnet Power Supply and Coil Quench Protection -- 4.4.6.1.Quench Protection Dump Resistor -- 4.4.6.2.The Role of Quench Back -- 4.4.7.Design Criteria for the Ends of a Detector Solenoid -- 4.4.7.1.Cold Mass Support System -- 4.4.7.2.The Solenoid Support Structure, the Cryogenic Heat Sink -- 4.4.7.3.Coil Electrical Connections and Leads to the Outside World -- 4.4.8.Cryogenic Cooling of a Detector Magnet -- 4.4.8.1.Forced Two-Phase Flow Circuits -- 4.4.8.2.Two-Phase Cooling Using Natural Convection -- 4.4.8.3.High-Temperature Superconducting (HTS) Leads -- 4.4.8.4.Detector Magnets Cooled and Cooled Down with Small Cooler -- References -- 4.5.Magnets for NMR and MRI / Seungyong Hahn -- 4.5.1.Introduction to NMR and MRI Magnets -- 4.5.1.1.NMR and MRI -- 4.5.1.2.Spatial Field Homogeneity -- 4.5.1.3.Temporal Stability -- 4.5.1.3.1.Persistent Mode -- 4.5.1.3.2.Driven Mode -- 4.5.1.4.General Coil Configurations of NMR and MRI Magnets -- 4.5.2.Specific Design Issues for NMR and MRI Magnets -- 4.5.2.1.Superconductor -- 4.5.2.2.Stability of Adiabatic Magnets -- 4.5.2.3.Stress Analysis -- Electromagnetic, Thermal, Winding -- 4.5.2.3.1.Electromagnetic -- 4.5.2.3.2.Thermal -- 4.5.2.3.3.Winding -- 4.5.2.4.Solenoidal Field -- 4.5.2.4.1.Harmonic Analysis -- 4.5.2.5.Field Mapping and Shimming -- 4.5.2.5.1.Active Shimming -- 4.5.2.5.2.Passive Shimming -- 4.5.2.6.Field Shielding -- 4.5.2.6.1.Active Shielding -- 4.5.2.6.2.Passive Shielding -- 4.5.2.7.Safety -- 4.5.3.Status (2013) of NMR and MRI Magnets -- 4.5.3.1.Solid-State and Solution NMR -- 4.5.3.1.1.LTS Magnets (400--1000 MHz) -- 4.5.3.1.2.LTS/HTS Magnets (> 1 GHz) -- 4.5.3.2.Medical Diagnostic MRI Magnet -- 4.5.3.2.1.Whole Body -- 4.5.3.2.2.Extremity -- 4.5.3.2.3.Functional -- 4.5.3.2.4.Research -- 4.5.4.HTS Applications to NMR and MRI Magnets -- 4.5.4.1.Annulus NMR -- 4.5.4.2.Liquid Helium (LHe)-Free -- 4.5.4.2.1.MgB2 MRI -- 4.5.4.3.No-Insulation Winding Technique -- 4.5.4.4.HTS Shim Coils -- 4.5.4.5.All-HTS 4.26 GHz (100 T) NMR Magnets -- 4.5.5.Conclusions -- References -- 4.6.Superconducting Magnets for Fusion / Jean-Luc Duchateau -- 4.6.1.Introduction to Fusion and Superconductivity -- 4.6.2.ITER -- 4.6.2.1.Introduction -- 4.6.2.2.The ITER Magnet System -- 4.6.2.3.Main Dimensioning Aspects of ITER -- 4.6.2.4.The ITER TF System -- 4.6.2.5.The ITER Model Coils -- 4.6.3.Cable in Conduit Conductors (CICC) -- 4.6.3.1.Introduction -- 4.6.3.2.Stability of Cable in Conduit Conductors -- 4.6.3.3.Current Densities in Cable in Conduit Conductor -- 4.6.4.Quench Protection and Quench Detection in Fusion Magnets -- 4.6.4.1.Specific Solution of Quench Protection for Fusion Magnets -- 4.6.4.2.High Voltages in Fusion Magnets During FSD and in Operation -- 4.6.4.2.1.Normal Operation -- 4.6.4.2.2.Quality Control During Coil Production -- 4.6.4.3.The Quench Protection Circuit (QPC) -- 4.6.4.4.Quench Detection -- 4.6.4.4.1.Mitigation of the Inductive Part of the Voltage -- 4.6.4.4.2.The Main Parameters of the Quench Detection -- 4.6.4.4.3.Quench Propagation in CICC -- 4.6.5.Prospective about Future Fusion Reactors: DEMO -- 4.6.5.1.Which Superconducting Material for DEMO? -- 4.6.6.Conclusion -- References -- 4.7.High-Temperature Superconducting (HTS) Magnets / Swam Singh Kalsi -- 4.7.1.Introduction -- 4.7.2.High-Field Magnets -- 4.7.3.Low-Field Magnets -- 4.7.3.1.Magnetic Separation -- 4.7.3.2.Crystal Growth -- 4.7.3.3.Induction Heating -- 4.7.3.4.Accelerator and Synchrotron Magnets -- 4.7.4.Outlook -- References -- 4.8.Magnetic Levitation and Transportation / John R. Hull -- 4.8.1.Introduction -- 4.8.2.Magnetic Levitation: Principles and Methods -- 4.8.2.1.Magnetic Forces -- 4.8.2.2.Static Stability -- 4.8.2.3.Magnetic Biasing -- 4.8.2.4.Electromagnetic Suspension -- 4.8.2.5.AC Levitation -- 4.8.2.6.Electrodynamic Levitation -- 4.8.2.7.Levitation by Tuned Resonators -- 4.8.2.8.Magnitude of Levitation Pressure -- 4.8.2.9.HTS/PM Levitation -- 4.8.2.10.Propulsion -- 4.8.3.Maglev Ground Transport -- 4.8.3.1.History -- 4.8.3.2.System Technical Considerations -- 4.8.3.3.Guideway Design -- 4.8.3.4.Cryostats and Vehicle Design -- 4.8.4.Clean-Room Application -- 4.8.5.Air and Space Launch -- References -- 5.Power Applications -- 5.1.Superconducting Cables / Joachim Bock -- 5.2.Practical Design of High-Temperature Superconducting Current Leads / Jonathan A. Demko -- 5.3.Fault Current Limiters / Swam Singh Kalsi -- 5.4.Transformers / Antonio Morandi -- 5.5.Energy Storage (SMES and Flywheels) / Antonio Morandi -- 5.6.Rotating Machines / Swam Singh Kalsi -- 5.7.SmartGrids: Motivations, Stakes, and Perspectives/Opportunities for Superconductivity / Marie-Cecile Alvarez-Herault -- 6.Superconductive Passive Devices -- 6.1.Superconducting Microwave Components / Neeraj Khare -- 6.2.Cavities for Accelerators / Hasan S. Padamsee -- 6.3.Superconducting Pickup Coils / Jarek Wosik -- 6.4.Magnetic Shields / James R. Clay comb -- 7.Applications in Quantum Metrology -- 7.1.Quantum Standards for Voltage / Johannes Kohlmann -- 7.2.Single Cooper Pair Circuits and Quantum Metrology / Alexander B. Zorin -- 8.Superconducting Radiation and Particle Detectors -- 8.1.Radiation and Particle Detectors / Claus Grupen -- 8.2.Superconducting Hot Electron Bolometers and Transition Edge Sensors / Flavio Gatti -- 8.3.SIS Mixers / Doris Maier -- 8.4.Superconducting Photon Detectors / Dagmar Henrich -- 8.5.Applications at Terahertz Frequency / Masayoshi Tonouchi -- 8.6.Detector Readout / Thomas Ortlepp -- 9.Superconducting Quantum Interference (SQUIDs) -- 9.1.Introduction / Robert L. Fagaly -- 9.2.Types of SQUIDs / Robert L. Fagaly -- 9.3.Magnetic Field Sensing with SQUID Devices -- 9.3.1.SQUIDs in Laboratory Applications / Robert L. Fagaly -- 9.3.2.SQUIDs in Nondestructive Evaluation / Saburo Tanaka -- 9.3.3.SQUIDs in Biomagnetism / Hannes Nowak -- 9.3.4.Geophysical Exploration / Ronny Stolz -- 9.3.5.Scanning SQUID Microscopy / John Kirtley -- 9.4.SQUID Thermometers / Jorn Beyer -- 9.5.Radio Frequency Amplifiers Based on DC SQUIDs / Robert McDermott -- 9.6.SQUID-Based Cryogenic Current Comparators / Paul Seidel -- 10.Superconductor Digital Electronics -- 10.1.Logic Circuits / Donald L. Miller -- 10.2.Superconducting Mixed-Signal Circuits / Hannes Toepfer -- 10.3.Digital Processing / Oleg Mukhanov -- 10.4.Quantum Computing / Jurgen Lisenfeld -- 10.5.Advanced Superconducting Circuits and Devices / Hannes Rotzinger -- 10.6.Digital SQUIDs / Pascal Febvre -- 11.Other Applications -- 11.1.Josephson Arrays as Radiation Sources (incl. Josephson Laser) / Huabing Wang -- 11.2.Tunable Microwave Devices / Neeraj Khare -- 12.Summary and Outlook / Herbert C. Freyhardt.
- Summary
- This wide-ranging presentation of applied superconductivity, from fundamentals and materials right up to the details of many applications, is an essential reference for physicists and engineers in academic research as well as in industry. Readers looking for a comprehensive overview on basic effects related to superconductivity and superconducting materials will expand their knowledge and understanding of both low and high Tc superconductors with respect to their application. Technology, preparation and characterization are covered for bulk, single crystals, thins fi lms as well as electronic devices, wires and tapes. The main benefit of this work lies in its broad coverage of significant applications in magnets, power engineering, electronics, sensors and quantum metrology. The reader will find information on superconducting magnets for diverse applications like particle physics, fusion research, medicine, and biomagnetism as well as materials processing. SQUIDs and their usage in medicine or geophysics arethoroughly covered, as are superconducting radiation and particle detectors, aspects on superconductor digital electronics, leading readers to quantum computing and new devices.
- Subject(s)
- Genre(s)
- ISBN
- 9783527670635 electronic bk.
3527670637 electronic bk.
9783527670666 electronic bk.
3527670661 electronic bk.
9783527412099
3527412093
9783527670659 (ePub)
9783527670642 (Mobi) - Note
- Includes index.
- Bibliography Note
- Includes bibliographical references and index.
View MARC record | catkey: 18362655