Actions for Na channels from phyla to function
Na channels from phyla to function / edited by Robert J. French and Sergei Yu. Noskov
- Published
- [Place of publication not identified] : Academic Press, 2016.
- Physical Description
- 1 online resource
- Additional Creators
- Noskov, Sergei and French, R. J.
Access Online
- Contents
- Machine generated contents note: Section 1 Historical Overview -- 1.On the Natural and Unnatural History of the Voltage-Gated Na+ Channel / E.G. Moczydlowski -- 1.Introduction to NaV as Surrogate Vital Spirit -- 2.NaV as Physics Lesson: Electrobiology Experiments Led to Electromagnetism -- 3.NaV as Discovery Channel: Finding Our Inner Action Potential -- 4.NaV as Biomolecule: The Other Secret of Life -- 5.NaV as Biotransistor: Elementary On--Off Switch of Neuronal Intelligence -- 6.NaV as a Pharmacologically Tunable On--Off Switch of Pain and Consciousness -- 7.NaV as Tragedy: A Locus of Nervous System Maladies -- 8.NaV as the Favorite Target of Nature's Venoms -- 9.NaV Exobiology: Why Na+? -- 10.NaV Endgame -- References -- Section 2 Evolutionary Adaptations of Channels and Toxins -- 2.Biophysical Adaptations of Prokaryotic Voltage-Gated Sodium Channels / P.G. DeCaen -- 1.Introduction -- 2.Adaptations in Cation Selectivity in Nav Channels -- 3.Adaptations in Voltage-Dependent Processes in the Prokaryotic Nay Family -- 4.Divergence in the Eukaryotic and Prokaryotic Nay Pharmacophores -- References -- 3.Venom Peptides From Cone Snails: Pharmacological Probes for Voltage-Gated Sodium Channels / B.M. Olivera -- 1.Introduction -- 2.Overview of Physiological Roles of Voltage-Gated Sodium Channel-Targeted Conus Venom Peptides -- 3.Conotoxin Interactions With Nav -- 4.Navβ Effects on Conotoxin Activity -- 5.Conclusions and Future Prospects -- Acknowledgments -- References -- 4.Convergent Evolution of Tetrodotoxin-Resistant Sodium Channels in Predators and Prey / E.D. Brodie -- 1.Introduction -- 2.Tetrodotoxin as an Agent of Selection -- 3.Molecular Patterns of Convergence in Tetrodotoxin-Resistant Nav Channels -- 4.Convergence Across Other Nav Paralogs -- 5.Convergence of Nav in Invertebrates -- 6.Implications of Molecular Convergence in Nav -- 7.Conclusion -- Acknowledgments -- References -- Section 3 Computational Studies and Modeling -- 5.Computational Structural Pharmacology and Toxicology of Voltage-Gated Sodium Channels / D.B. Tikhonov -- 1.Introduction -- 2.Structure of Sodium Channels -- 3.Homology Modeling -- 4.Progress in Modeling Sodium Channel With Ligands -- 5.Conclusions -- Acknowledgments -- References -- 6.Understanding Sodium Channel Function and Modulation Using Atomistic Simulations of Bacterial Channel Structures / T.W. Allen -- 1.Introduction -- 2.Sodium Channel Architecture -- 3.Principles of Sodium Conduction and Selectivity -- 4.Structural Basis for Activation and Inactivation -- 5.Drug Binding and Modulation -- 6.Discussion and Conclusions -- Acknowledgments -- References -- 7.Voltage-Gated Sodium Channels: Mechanistic Insights From Atomistic Molecular Dynamics Simulations / C. Domene -- 1.Introduction -- 2.Voltage-Gated Sodium Channels -- 3.Structural Basis of K+ Versus Na+ Conduction -- 4.Overview of Computational Studies -- 5.Conclusions -- Acknowledgments -- References -- 8.Simulation Studies of Ion Permeation and Selectivity in Voltage-Gated Sodium Channels / R. Pomes -- 1.Introduction -- 2.Voltage-Gated Sodium Channels -- 3.Mechanism of Ion Permeation and Selectivity in K+ Channels -- 4.Molecular Simulations of Sodium Channels -- 5.Ion Binding and Permeation in Nav Channels -- 6.Ionic Selectivity of Nav Channels -- 7.Critical Discussion -- 8.Perspectives -- Acknowledgments -- References -- 9.Voltage-Gated Sodium Channels: Evolutionary History and Distinctive Sequence Features / V. Carnevale -- 1.Introduction -- 2.Evolutionary History of Nav -- 3.Distinctive Sequence Features of Pseudotetrameric Channels -- 4.Summary and Conclusion: What Can We Learn From Sequences About Nav Gating? -- References -- 10.Cardiac Na Channels: Structure to Function / C.E. Clancy -- 1.Na+ Channels: INa the Fast Voltage-Gated Na+ Channel -- 2.Activation of the Cardiac Na+ Channel Nav1.5 -- 3.Inactivation -- 4.Fast Inactivation -- 5.Slow Inactivation -- 6.Recovery From Inactivation -- 7.Regulation of Cardiac Nav1.5 -- 8.Summary -- Acknowledgments -- References -- Section 4 Functional Studies -- Modulation by Other Molecules and Roles of Inactivation and Prolonged Currents -- 11.Developmental and Regulatory Functions of Na+ Channel Non-pore-forming β Subunits / L.L. Isom -- 1.Introduction to the β Subunits -- 2.β Subunit Evolution, Genes, and Structure -- 3.β Subunit Expression, Localization, and Posttranslational Modification -- 4.β Subunits Modulate α Subunit Localization and Function -- 5.β Subunits Are CAMs That Have Roles in Brain Development -- 6.β Subunit Gene Mutations Are Linked to Epilepsy and Cardiac Arrhythmia -- 7.Concluding Remarks -- References -- 12.Lipid Regulation of Sodium Channels / N. D'Avanzo -- 1.Introduction -- 2.Regulation of Nav Channels by the Physiochemical Properties of the Bilayer -- 3.Fatty Acids -- 4.Glycerophospholipids -- 5.Sterols -- 6.Sphingolipids -- 7.Cannabinoids -- 8.Conclusions -- References -- 13.Mechanism of Inactivation in Voltage-Gated Na+ Channels / H. Todt -- 1.Molecular Architecture of Voltage-Gated Na+ Channels -- 2.The Kinetic States of Voltage-Gated Na+ Channels -- 3.Fast Inactivation -- 4.Long-Term Inactivation -- 5.Slow Inactivation -- 6.Summary and Outlook -- References -- 14.Current---Voltage Relationship for Late Na+ Current in Adult Rat Ventricular Myocytes / W.R. Giles -- 1.Introduction -- 2.Methods -- 3.Results -- 4.Discussion -- Acknowledgments -- References -- 15.Physiology and Pathophysiology of Sodium Channel Inactivation / P.C. Ruben -- 1.Physiology and Structural Basis of Inactivation -- 2.Nay1.1 -- 3.Nav1.2 -- 4.Nav1.3 -- 5.Nav1.4 -- 6.Nav1.5 -- 7.Nav1.6 -- 8.Nav1.7 -- 9.Nay1.8 -- 10.Nav1.9 -- 11.Drug Interactions -- 12.Concluding Remarks -- References -- Section 5 Sodium Channels Under Stress and in Disease -- 16.Cardiac Sodium Channel Mutations: Why so Many Phenotypes? / S.C. Dudley Jr. -- 1.Introduction -- 2.The Cardiac Nav1.5 -- 3.Phenotypic Variability of Cardiac Nav1.5 Mutations -- 4.Sources of Phenotypic Variability -- 5.Summary -- 6.Disclosures -- Acknowledgments -- References -- 17.Nav Channels in Damaged Membranes / B. Joos -- 1.The Problem: Acquired Sodium Channelopathies---A Feature of Sick Excitable Cells -- 2.Modeling: Underlying Simplicity for Diverse Excitability Pathologies -- 3.Therapeutic Agents: A Need to Recognize Bleb-Damaged Membrane -- 4.Irreversible Bleb-Type Damage in Membrane Patches -- 5.Nav1.4 in Damaged Oocyte Membranes---Trauma-Induced Switch From Slow to Fast Mode -- 6.Nav1.6 in Damaged Oocyte Membranes -- 7.MS Modulation of Squid Axon Voltage-Gated Channels -- 8.Coupled Left-Shift: Kinetic Linkage of Activation to Inactivation -- 9.Does the Domain-4 V-Sensor, the Site of "Coupling Mutants" Play a Role in Nav-CLS? -- 10.Using the Hodgkin---Huxley Formulation to Simulate the Coupling of g(V) and Availability(V) in MS Nav-CLS -- 11.Computations to Illustrate the Pathoexcitability Spectrum of Nav-CLS -- 12.An Aside on Excitability Thresholds and Ion Homeostasis -- 13.An Excitable Cell's Injury Worsens---Modeled -- 14.Tactile Allodynia (Hypersensitivity to Stimuli) and Left-Shifted Nav Currents -- 15.Threshold Tracking, Peripheral Neuropathies, Cancer Chemotherapy -- 16.When a Nav Channel Left-Shifts Due to Membrane Damage Does This Affect Both Fast and Slow Modes? -- 17.Bleb-Damaged T-Tubular Membranes -- 18.Propagation Infidelities and Block Due to Nav-CLS -- 19.Mildly Injured Excitable Membrane? Do Not Disturb -- 20.Nav-CLS Modeling of Acute Mild Traumatic Brain Injury -- 21.Conclusion -- References -- 18.Unusual Voltage-Gated Sodium Currents as Targets for Pain / T.R. Cummins -- 1.Overview -- 2.Sodium Channels in Peripheral Sensory Neurons -- 3.Inactivation and Resurgent Current Contribution to Excitability of Sensory Neurons -- 4.Classic Sodium Currents Role in Pain -- 5.Atypical Sodium Currents and Pain -- 6.Therapeutic Strategies -- References.
- Subject(s)
- ISBN
- 9780128092538 (electronic bk.)
012809253X (electronic bk.)
9780128053867
0128053860 - Note
- Includes index.
View MARC record | catkey: 18896854