Electrical properties of materials / L. Solymar, Department of Electrical and Electronic Engineering, Imperial College, London ; D. Walsh, Department of Engineering Science, University of Oxford ; R.R.A. Syms, Department of Electrical and Electronic Engineering, Imperial College, London
- Author:
- Solymar, L. (Laszlo)
- Published:
- Oxford : Oxford University Press, 2014.
- Edition:
- Ninth edition.
- Physical Description:
- xvi, 484 pages : illustrations ; 26 cm
- Additional Creators:
- Walsh, D. (Donald) and Syms, R. R. A.
- Contents:
- Machine generated contents note: 1.1.Introduction -- 1.2.The effect of an electric field-conductivity and Ohm's law -- 1.3.The hydrodynamic model of electron flow -- 1.4.The Hall effect -- 1.5.Electromagnetic waves in solids -- 1.6.Waves in the presence of an applied magnetic field: cyclotron resonance -- 1.7.Plasma waves -- 1.8.Johnson noise -- 1.9.Heat -- Exercises -- 2.1.Introduction -- 2.2.The electron microscope -- 2.3.Some properties of waves -- 2.4.Applications to electrons -- 2.5.Two analogies -- Exercises -- 3.1.Introduction -- 3.2.Schrodinger's equation -- 3.3.Solutions of Schrodinger's equation -- 3.4.The electron as a wave -- 3.5.The electron as a particle -- 3.6.The electron meeting a potential barrier -- 3.7.Two analogies -- 3.8.The electron in a potentiW well -- 3.9.The potential well with a rigid wall -- 3.10.The uncertainty relationship -- 3.11.Philosophical implications -- Exercises -- 4.1.The hydrogen atom -- 4.2.Quantum numbers -- 4.3.Electron spin and Pauli's exclusion principle -- 4.4.The periodic table -- Exercises -- 5.1.Introduction -- 5.2.General mechanical properties of bonds -- 5.3.Bond types -- 5.3.1.Ionic bonds -- 5.3.2.Metallic bonds -- 5.3.3.The covalent bond -- 5.3.4.The van der Waals bond -- 5.3.5.Mixed bonds -- 5.3.6.Carbon again -- 5.4.Feynman's coupled mode approach -- 5.5.Nuclear forces -- 5.6.The hydrogen molecule -- 5.7.An analogy -- Exercises -- 6.1.Free electrons -- 6.2.The density of states and the Fermi-Dirac distribution -- 6.3.The specific heat of electrons -- 6.4.The work function -- 6.5.Thermionic emission -- 6.6.The Schottky effect -- 6.7.Field emission -- 6.8.The field-emission microscope -- 6.9.The photoelectric effect -- 6.10.Quartz-halogen lamps -- 6.11.The junction between two metals -- Exercises -- 7.1.Introduction -- 7.2.The Kronig-Penney model -- 7.3.The Ziman model -- 7.4.The Feynman model -- 7.5.The effective mass -- 7.6.The effective number of free electrons -- 7.7.The number of possible states per band -- 7.8.Metals and insulators -- 7.9.Holes -- 7.10.Divalent metals -- 7.11.Finite temperatures -- 7.12.Concluding remarks -- Exercises -- 8.1.Introduction -- 8.2.Intrinsic semiconductors -- 8.3.Extrinsic semiconductors -- 8.4.Scattering -- 8.5.A relationship between electron and hole densities -- 8.6.III-V and II-VI compounds -- 8.7.Non-equilibrium processes -- 8.8.Real semiconductors -- 8.9.Amorphous semiconductors -- 8.10.Measurement of semiconductor properties -- 8.10.1.Mobility -- 8.10.2.Hall coefficient -- 8.10.3.Effective mass -- 8.10.4.Energy gap -- 8.10.5.Carrier lifetime -- 8.11.Preparation of pure and controlled-impurity single-crystal semiconductors -- 8.11.1.Crystal growth from the melt -- 8.11.2.Zone refining -- 8.11.3.Modern methods of silicon purification -- 8.11.4.Epitaxial growth -- 8.11.5.Molecular beam epitaxy -- 8.11.6.Metal-organic chemical vapour deposition -- 8.11.7.Hydride vapour phase epitaxy (HYPE) for nitride devices -- Exercises -- 9.1.Introduction -- 9.2.The p-n junction in equilibrium -- 9.3.Rectification -- 9.4.Injection -- 9.5.Junction capacity -- 9.6.The transistor -- 9.7.Metal-semiconductor junctions -- 9.8.The role of surface states; real metal-semiconductor junctions -- 9.9.Metal-insulator-semiconductor junctions -- 9.10.The tunnel diode -- 9.11.The backward diode -- 9.12.The Zener diode and the avalanche diode -- 9.12.1.Zener breakdown -- 9.12.2.Avalanche breakdown -- 9.13.Varactor diodes -- 9.14.Field-effect transistors -- 9.15.Heterostructures -- 9.16.Charge-coupled devices -- 9.17.Silicon controlled rectifier -- 9.18.The Gunn effect -- 9.19.Strain gauges -- 9.20.Measurement of magnetic field by the Hall effect -- 9.21.Gas sensors -- 9.22.Microelectronic circuits -- 9.23.Plasma etching -- 9.24.Recent techniques for overcoming limitations -- 9.25.Building in the third dimension -- 9.26.Microelectro-mechanical systems (MEMS) -- 9.26.1.A movable mirror -- 9.26.2.A mass spectrometer on a chip -- 9.27.Nanoelectronics -- 9.28.Social implications -- Exercises -- 10.1.Introduction -- 10.2.Macroscopic approach -- 10.3.Microscopic approach -- 10.4.Types of polarization -- 10.5.The complex dielectric constant and the refractive index -- 10.6.Frequency response -- 10.7.Anomalous dispersion -- 10.8.Polar and non-polar materials -- 10.9.The Debye equation -- 10.10.The effective field -- 10.11.Acoustic waves -- 10.12.Dielectric breakdown -- 10.12.1.Intrinsic breakdown -- 10.12.2.Thermal breakdown -- 10.12.3.Discharge breakdown -- 10.13.Piezoelectricity, pyroelectricity, and ferroelectricity -- 10.13.1.Piezoelectricity -- 10.13.2.Pyroelectricity -- 10.13.3.Ferroelectrics -- 10.14.Interaction of optical phonons with drifting electrons -- 10.15.Optical fibres -- 10.16.The Xerox process -- 10.17.Liquid crystals -- 10.18.Dielectrophoresis -- Exercises -- 11.1.Introduction -- 11.2.Macroscopic approach -- 11.3.Microscopic theory (phenomenological) -- 11.4.Domains and the hysteresis curve -- 11.5.Soft magnetic materials -- 11.6.Hard magnetic materials (permanent magnets) -- 11.7.Microscopic theory (quantum-mechanical) -- 11.7.1.The Stern-Gerlach experiment -- 11.7.2.Paramagnetism -- 11.7.3.Paramagnetic solids -- 11.7.4.Antiferromagnetism -- 11.7.5.Ferromagnetism -- 11.7.6.Ferrimagnetism -- 11.7.7.Garnets -- 11.7.8.Helimagnetism -- 11.8.Magnetic resonance -- 11.8.1.Paramagnetic resonance -- 11.8.2.Electron spin resonance -- 11.8.3.Ferromagnetic, antiferromagnetic, and ferrimagnetic resonance -- 11.8.4.Nuclear magnetic resonance -- 11.8.5.Cyclotron resonance -- 11.9.The quantum Hall effect -- 11.10.Magnetoresistance -- 11.11.Spintronics -- 11.11.1.Spin current -- 11.11.2.Spin tunnelling -- 11.11.3.Spin waves and magnons -- 11.11.4.Spin Hall effect and its inverse -- 11.11.5.Spin and light -- 11.11.6.Spin transfer torque -- 11.12.Some applications -- 11.12.1.Isolators -- 11.12.2.Sensors -- 11.12.3.Magnetic read-heads -- 11.12.4.Electric motors -- Exercises -- 12.1.Equilibrium -- 12.2.Two-state systems -- 12.3.Lineshape function -- 12.4.Absorption and amplification -- 12.5.Resonators and conditions of oscillation -- 12.6.Some practical laser systems -- 12.6.1.Solid state lasers -- 12.6.2.The gaseous discharge laser -- 12.6.3.Dye lasers -- 12.6.4.Gas-dynamic lasers -- 12.6.5.Excimer lasers -- 12.6.6.Chemical lasers -- 12.7.Semiconductor lasers -- 12.7.1.Fundamentals -- 12.7.2.Wells, wires, and dots -- 12.7.3.Bandgap engineering -- 12.7.4.Quantum cascade lasers -- 12.8.Laser modes and control techniques -- 12.8.1.Transverse modes -- 12.8.2.Axial modes -- 12.8.3.Q switching -- 12.8.4.Cavity dumping -- 12.8.5.Mode locking -- 12.9.Parametric oscillators -- 12.10.Optical fibre amplifiers -- 12.11.Masers -- 12.12.Noise -- 12.13.Applications -- 12.13.1.Nonlinear optics -- 12.13.2.Spectroscopy -- 12.13.3.Photochemistry -- 12.13.4.Study of rapid events -- 12.13.5.Plasma diagnostics -- 12.13.6.Plasma heating -- 12.13.7.Acoustics -- 12.13.8.Genetics -- 12.13.9.Metrology -- 12.13.10.Manipulation of atoms by light -- 12.13.11.Optical radar -- 12.13.12.Optical discs -- 12.13.13.Medical applications -- 12.13.14.Machining -- 12.13.15.Sensors -- 12.13.16.Communications -- 12.13.17.Nuclear applications -- 12.13.18.Holography -- 12.13.19.Raman scattering -- 12.14.The atom laser -- Exercises -- 13.1.Introduction -- 13.2.Light detectors -- 13.3.Light emitting diodes (LEDs) -- 13.4.Electro-optic, photorefractive, and nonlinear materials -- 13.5.Volume holography and phase conjugation -- 13.6.Acousto-optic interaction -- 13.7.Integrated optics -- 13.7.1.Waveguides -- 13.7.2.Phase shifter -- 13.7.3.Directional coupler -- 13.7.4.Filters -- 13.8.Spatial light modulators -- 13.9.Nonlinear Fabry-Perot cavities -- 13.10.Optical switching -- 13.11.Electro-absorption in quantum well structures -- 13.11.1.Excitons -- 13.11.2.Excitons in quantum wells -- 13.11.3.Electro-absorption -- 13.11.4.Applications -- Exercises -- 14.1.Introduction -- 14.2.The effect of a magnetic field -- 14.2.1.The critical magnetic field -- 14.2.2.The Meissner effect -- 14.3.Microscopic theory -- 14.4.Thermodynamical treatment -- 14.5.Surface energy -- 14.6.The Landau-Ginzburg theory -- 14.7.The energy gap -- 14.8.Some applications -- 14.8.1.High-field magnets -- 14.8.2.Switches and memory elements -- 14.8.3.Magnetometers -- 14.8.4.Metrology -- 14.8.5.Suspension systems and motors -- 14.8.6.Radiation detectors -- 14.8.7.Heat valves -- 14.9.High-Tc superconductors -- 14.10.New superconductors -- Exercises -- 15.1.Introduction -- 15.2.Natural and artificial materials -- 15.3.Photonic bandgap materials -- 15.4.Equivalent plasma frequency of a wire medium -- 15.5.Resonant elements for metamaterials -- 15.6.Polarizability of a current-carrying resonant loop -- 15.7.Effective permeability -- 15.8.Effect of negative material constants -- 15.9.The 'perfect' lens -- 15.10.Detectors for magnetic resonance imaging.
- Subject(s):
- ISBN:
- 9780198702771 (hbk.)
0198702779 (hbk.)
9780198702788 (pbk.)
0198702787 (pbk.) - Bibliography Note:
- Includes bibliographical references and index.
View MARC record | catkey: 20273340