Actions for Introduction to the Smart Grid [electronic resource] : Concepts, Technologies and Evolution
Introduction to the Smart Grid [electronic resource] : Concepts, Technologies and Evolution / Salman K. Salman (k.salman@btinternet.com).
- Author
- Salman, S. K. (Salman K.)
- Published
- Stevenage : IET, 2017.
- Physical Description
- 1 online resource (260 pages).
Access Online
- Series
- Contents
- Machine generated contents note: 1.1.Background and history of Smart Grid evolution -- 1.2.Definition of the Smart Grid -- 1.3.Characteristics of the Smart Grid -- 1.4.Smart Grid benefits -- 1.5.Smart Grid vision and its realization -- 1.5.1.Definition of Smart Grid vision -- 1.5.2.The IEEE Computer Society Smart Grid Vision -- 1.6.Examples of Smart Grid projects/initiatives -- 1.6.1.US Smart Grid efforts -- 1.6.2.European Smart Grid efforts -- 1.6.3.China's Smart Grid efforts -- 1.7.Summary -- References -- 2.1.Introduction -- 2.2.Conventional electrical networks -- 2.2.1.Infrastructure of conventional electrical networks -- 2.2.2.Main characteristics of conventional electrical networks -- 2.3.Motives behind developing the Smart Grid concept -- 2.3.1.Aging of conventional electrical networks coupled with the emergence of new applications -- 2.3.2.Political and environmental factors -- 2.3.3.Liberalization of electricity market (economic factors) -- 2.3.4.Motivation and inclusion of customers -- 2.4.Comparison between Smart Grid and conventional electrical networks -- 2.5.Evolution of Smart Grid concept -- 2.5.1.Characteristics of Smart Grid as defined by EU and US Smart Grid visions -- 2.5.2.Advanced metering infrastructure -- 2.6.An overview of the Smart Grid infrastructure -- 2.7.Summary -- References -- 3.1.Introduction -- 3.2.Composition of the Smart Grid -- 3.2.1.Composition of Smart Grid based on standards adaptation -- 3.2.2.Composition of Smart Grid based on technical components' perspective -- 3.2.3.Composition of Smart Grid based on technical perspective -- 3.2.4.Composition of Smart Grid based on conceptual reference model perspective -- 3.3.Basic components of Smart Grid and its technical infrastructure -- 3.3.1.Basic components of Smart Grid -- 3.3.2.Smart Grid infrastructure -- 3.4.Summary -- References -- 4.1.Introduction -- 4.2.Analogy between the interoperability of a digitally based device and human interoperability -- 4.2.1.Definition -- 4.3.Cyber interoperability standards -- 4.3.1.Aim of interoperability standards -- 4.3.2.Type and characteristics of interoperability standards for Smart Grid -- 4.4.Interoperability standards development organizations -- 4.5.Electrical power industry standards development organizations (SDOs) and key interoperability standards -- 4.5.1.The International Electrotechnical Commission -- 4.5.2.Institute of Electrical and Electronic Engineers (IEEE) -- 4.5.3.Internet Engineering Task Force -- 4.5.4.American National Standards Institute (ANSI) -- 4.5.5.National Institute of Standards and Technology (NIST) -- 4.5.6.North American Electric Reliability Corporation (NERC) -- 4.5.7.World Wide Web Consortium (W3C) -- 4.5.8.German Standards Institute DIN (Deutsches Institut fur Normung) -- 4.6.Users groups and collaborative efforts within the power industry -- 4.6.1.UCA International Users Group -- 4.6.2.National Rural Electric Cooperative Association (NRECA)'s MultiSpeak -- 4.6.3.Cigre -- 4.6.4.GridWise[™] Alliance -- 4.6.5.Electric Power Research Institute (EPRI)'s IntelliGrid program -- 4.6.6.Vendor collaborations -- 4.6.7.Utility Standards Board -- 4.7.Summary -- References -- 5.1.Introduction -- 5.2.Classification of power system communication according to their functional requirements -- 5.2.1.Real-time operational communication systems -- 5.2.2.Administrative operational communication systems -- 5.2.3.Administrative communication systems -- 5.3.Existing electric power system communication infrastructure and its limitation -- 5.4.Smart Grid communication system infrastructure -- 5.4.1.Fundamental functions of the Smart Grid communication infrastructure -- 5.4.2.Architecture of Smart Grid communication infrastructure -- 5.4.3.Smart Grid communication infrastructure challenges -- 5.4.4.Standardization efforts by industry -- 5.5.Cyber security of power systems -- 5.5.1.Basic definitions -- 5.5.2.Security of power systems and cyber attacks -- 5.5.3.Smart Grid cyber security -- 5.6.Summary -- References -- 6.1.Introduction and historical background -- 6.2.Aim and objectives of IEC 61850 -- 6.3.The structure of IEC 61850 -- 6.4.The process bus -- 6.4.1.Practical implementation of the process bus -- 6.5.Merging unit -- 6.6.Comprehensive modeling approach of IEC 61850 -- 6.7.Mapping process approach of IEC 61850 to protocols -- 6.8.IEC 61850 substation configuration language -- 6.9.IEC 61850 substation architecture -- 6.10.Smart Grids and IEC 61850 -- 6.10.1.Example of Smart Grid demonstration projects using IEC 61850 -- 6.11.Summary -- References -- 7.1.Introduction -- 7.2.Protection prior to the Smart Grid era -- 7.3.Protection systems under Smart Grid environment -- 7.3.1.Operating concepts of Smart Grid protection relays -- 7.3.2.Fault circuit indicator -- 7.4.Smart Grid communication infrastructure that suits protection requirements -- 7.5.Smart Grid requires smarter protection -- 7.6.Architecture of Smart Grid protection system -- 7.7.Examples on development of smart adaptive protection systems -- 7.7.1.Smart adaptive protection for microgrids -- 7.7.2.Adaptive protection for smart distribution networks -- 7.8.Protection system architecture based on IEC 61850 -- 7.8.1.Traditional practices -- 7.8.2.New opportunities offered by the introduction of IEC 61850 standard -- 7.9.Summary -- References -- 8.1.Introduction -- 8.2.Smart distribution networks versus conventional distribution networks -- 8.3.Why distribution networks need to be smart? -- 8.4.Basic building blocks of a smart distribution network -- 8.4.1.Agents -- 8.4.2.Characteristics of agents -- 8.4.3.PowerMatch -- 8.4.4.E-terra trade -- 8.4.5.E-terra control -- 8.5.Evolvement of distribution networks into Smart Grids -- 8.5.1.Flexible Electricity Networks to Integrate the eXpected Energy Evolution (FENIX) -- 8.5.2.Active Distribution network with full integration of Demand and distributed energy Resources (Address) -- 8.6.Summary -- References -- 9.1.Introduction -- 9.2.Types of electric drive vehicle -- 9.3.Benefits of transportation electrifications -- 9.4.The driving factors toward transportation electrification -- 9.5.Challenges to EV adoption -- 9.5.1.Challenges faced by customers -- 9.5.2.Challenges faced by utilities -- 9.6.Types of EV charging systems -- 9.6.1.L1 AC charging systems -- 9.6.2.L2 AC charging systems -- 9.6.3.L3 DC Charging stations -- 9.7.Smart Grid enables smart charging -- 9.7.1.Robust, reliable, and secure connectivity -- 9.7.2.Integration of EV charging infrastructure into demand side management (DSM) system -- 9.7.3.Provision of distributed intelligence -- 9.7.4.Provision of a separate meter at the EVSE integrated into AMI -- 9.7.5.Integration of EV charging infrastructure into DR system -- 9.7.6.Integration of EV charging infrastructure into distributed automation (DA) system -- 9.7.7.Coordination with renewable energy-based generation -- 9.8.Load management of EVs using Smart-Grid technologies -- 9.8.1.The difference EVs make to electricity load -- 9.8.2.Optimizing scheduling of EV charging using Smart-Grid technologies -- 9.8.3.EVs can help in meeting peak load -- 9.8.4.Management of intermittent renewable energy-based generation using EVs -- 9.8.5.Effect of regulation, electricity pricing business models for EVs charging stations on load management of EVs -- 9.9.Flexibility of electric vehicles and their integration into Smart Grid -- 9.9.1.Definition of flexibility in relation to EV -- 9.9.2.Components related to EV-Smart-Grid integration -- 9.9.3.Management of the flexibility provided by EVs stored energy -- 9.10.Coordination of multiple plug-in electric vehicle charging in Smart Grids using real-time smart load management (RT-SLM) algorithm -- 9.10.1.Background and assumptions -- 9.10.2.RL-SLM coordination algorithm -- 9.10.3.Automation of scheduling PEVs charging using RT-SLM algorithm -- 9.11.Summary -- References -- 10.1.Introduction -- 10.2.Characteristics of energy storage devices/systems and -- 10.3.Types and characteristics of EES systems -- 10.3.1.Mechanical storage systems -- 10.3.2.Electrochemical storage systems (batteries) -- 10.3.3.Chemical ESS -- 10.3.4.Electrical storage systems -- 10.3.5.Thermal energy storage systems -- 10.4.Benefits of ESSs -- 10.5.Applications of ESSs -- 10.5.1.Electrical network energy storage applications -- 10.5.2.Transport and mobility energy storage applications -- 10.6.Energy storage systems and integration of wind power-based plants -- 10.6.1.Mitigation of power fluctuation -- 10.6.2.Improvement in LVRT capability -- 10.7.Summary -- References -- 11.1.Introduction -- 11.2.Why transmission grids need to be smart? -- 11.3.Challenges and requirements of future STG -- 11.3.1.Environmental challenges -- 11.3.2.Market/customer requirements -- 11.3.3.Infrastructure challenges -- 11.3.4.Adaptation of innovative technologies -- 11.4.The essential aspects of the STG -- 11.4.1.Integration of synchrophasor measurements technology into transmission system operation and control -- 11.4.2.Compatibility of ICT infrastructure -- 11.4.3.Operational and coordination issues -- 11.5.Vision of future STG -- 11.5.1.Characteristics of future STG -- 11.5.2.Basic components of STG -- 11.5.3.Smart transmission network -- 11.5.4.Smart transmission substations -- 11.5.5.Smart control centers -- 11.6.Current research activities on STG -- 11.6.1.Smart transmission grid research in Europe -- 11.6.2.Smart transmission grid research in USA -- 11.6.3.Smart transmission grid research in China -- 11.7.Summary -- References.
- Summary
- The book reviews developments in the following fields: smart grid; power system protection; distribution networks; and energy storage systems.
- Subject(s)
- Other Subject(s)
- ISBN
- 9781785611209
View MARC record | catkey: 20821721