Optimization of energy systems / Ibrahim Dincer and Marc A Rosen, Pouria Ahmadi
- Author
- Dinçer, İbrahim, 1964-
- Published
- Chichester, West Sussex, UK : John Wiley & Sons Inc., 2017.
- Copyright Date
- ©2017
- Physical Description
- 1 online resource
- Additional Creators
- Rosen, Marc (Marc A.) and Ahmadi, Pouria
Access Online
- Contents
- Machine generated contents note: 1.1.Introduction -- 1.2.Thermodynamics -- 1.3.The First Law of Thermodynamics -- 1.3.1.Thermodynamic System -- 1.3.2.Process -- 1.3.3.Cycle -- 1.3.4.Heat -- 1.3.5.Work -- 1.3.6.Thermodynamic Property -- 1.3.6.1.Specific Internal Energy -- 1.3.6.2.Specific Enthalpy -- 1.3.6.3.Specific Entropy -- 1.3.7.Thermodynamic Tables -- 1.3.8.Engineering Equation Solver (EES) -- 1.4.The Second Law of Thermodynamics -- 1.5.Reversibility and Irreversibility -- 1.6.Exergy -- 1.6.1.Exergy Associated with Kinetic and Potential Energy -- 1.6.2.Physical Exergy -- 1.6.3.Chemical Exergy -- 1.6.3.1.Standard Chemical Exergy -- 1.6.3.2.Chemical Exergy of Gas Mixtures -- 1.6.3.3.Chemical Exergy of Humid Air -- 1.6.3.4.Chemical Exergy of Liquid Water and Ice -- 1.6.3.5.Chemical Exergy for Absorption Chillers -- 1.6.4.Exergy Balance Equation -- 1.6.5.Exergy Efficiency -- 1.6.6.Procedure for Energy and Exergy Analyses -- 1.7.Concluding Remarks -- References -- Study Questions/Problems -- 2.1.Introduction -- 2.2.Modeling -- 2.2.1.Air compressors -- 2.2.2.Gas Turbines -- 2.2.3.Pumps -- 2.2.4.Closed Heat Exchanger -- 2.2.5.Combustion Chamber (CC) -- 2.2.6.Ejector -- 2.2.7.Flat Plate Solar Collector -- 2.2.8.Solar Photovoltaic Thermal (PV/T) System -- 2.2.9.Solar Photovoltaic Panel -- 2.3.Optimization -- 2.3.1.System Boundaries -- 2.3.2.Objective Functions and System Criteria -- 2.3.3.Decision Variables -- 2.3.4.Constraints -- 2.3.5.Optimization Methods -- 2.3.5.1.Classical Optimization -- 2.3.5.2.Numerical Optimization Methods -- 2.3.5.3.Evolutionary Algorithms -- 2.4.Multi-objective Optimization -- 2.4.1.Sample Applications of Multi-objective Optimization -- 2.4.1.1.Economics -- 2.4.1.2.Finance -- 2.4.1.3.Engineering -- 2.4.2.Illustrative Example: Air Compressor Optimization -- 2.4.2.1.Thermodynamic and Economic Modeling and Analysis -- 2.4.2.2.Decision Variables -- 2.4.2.3.Constraints -- 2.4.2.4.Multi-objective Optimization -- 2.4.3.llustrative Example: Steam Turbine -- 2.4.3.1.Decision Variables -- 2.4.3.2.Constraints -- 2.4.3.3.Multi-objective Optimization -- 2.5.Concluding Remarks -- References -- Study Questions/Problems -- 3.1.Introduction -- 3.2.Air Compressor -- 3.3.Steam Turbine -- 3.4.Pump -- 3.4.1.Modeling and Simulation of a Pump -- 3.4.2.Decision variables -- 3.4.3.Constraints -- 3.4.4.Multi-objective Optimization of a Pump -- 3.5.Combustion Chamber -- 3.5.1.Modeling and Analysis of a Combustion Chamber -- 3.5.1.1.Total Cost Rate -- 3.5.2.Decision Variables -- 3.5.3.Constraints -- 3.5.4.Multi-objective Optimization -- 3.6.Flat Plate Solar Collector -- 3.6.1.Modeling and Analysis of Collector -- 3.6.2.Decision Variables and Input Data -- 3.6.3.Constraints -- 3.6.4.Multi-objective Optimization -- 3.7.Ejector -- 3.7.1.Modeling and Analysis of an Ejector -- 3.7.2.Decision Variables and Constraints -- 3.7.3.Objective Functions and Optimization -- 3.8.Concluding Remarks -- References -- Study Questions/Problems -- 4.1.Introduction -- 4.2.Types of Heat Exchangers -- 4.3.Modeling and Optimization of Shell and Tube Heat Exchangers -- 4.3.1.Modeling and Simulation -- 4.3.2.Optimization -- 4.3.2.1.Definition of Objective Functions -- 4.3.2.2.Decision Variables -- 4.3.3.Case Study -- 4.3.4.Model Verification -- 4.3.5.Optimization Results -- 4.3.6.Sensitivity Analysis Results -- 4.4.Modeling and Optimization of Cross Flow Plate Fin Heat Exchangers -- 4.4.1.Modeling and Simulation -- 4.4.2.Optimization -- 4.4.2.1.Decision Variables -- 4.4.3.Case Study -- 4.4.4.Model Verification -- 4.4.5.Optimization Results -- 4.4.6.Sensitivity Analysis Results -- 4.5.Modeling and Optimization of Heat Recovery Steam Generators -- 4.5.1.Modeling and Simulation -- 4.5.2.Optimization -- 4.5.2.1.Decision Variables -- 4.5.3.Case Study -- 4.5.4.Modeling Verification -- 4.5.5.Optimization Results -- 4.5.6.Sensitivity Analysis Results -- 4.6.Concluding Remarks -- References -- Study Questions/Problems -- 5.1.Introduction -- 5.2.Vapor Compression Refrigeration Cycle -- 5.2.1.Thermodynamic Analysis -- 5.2.2.Exergy Analysis -- 5.2.3.Optimization -- 5.2.3.1.Decision Variables -- 5.2.3.2.Optimization Results -- 5.3.Cascade Refrigeration Systems -- 5.4.Absorption Chiller -- 5.4.1.Thermodynamic Analysis -- 5.4.2.Exergy Analysis -- 5.4.3.Exergoeconomic Analysis -- 5.4.4.Results and Discussion -- 5.4.4.1.Optimization -- 5.4.4.2.Optimization Results -- 5.5.Concluding Remarks -- References -- Study Questions/Problems -- 6.1.Introduction -- 6.2.Air/Water Heat Pump System -- 6.3.System Exergy Analysis -- 6.4.Energy and Exergy Results -- 6.5.Optimization -- 6.6.Concluding Remarks -- Reference -- Study Questions/Problems -- 7.1.Introduction -- 7.2.Thermodynamics of Fuel Cells -- 7.2.1.Gibbs Function -- 7.2.2.Reversible Cell Potential -- 7.3.PEM Fuel Cell Modeling -- 7.3.1.Exergy and Exergoeconomic Analyses -- 7.3.2.Multi-objective Optimization of a PEM Fuel Cell System -- 7.4.SOFC Modeling -- 7.4.1.Mathematical Model -- 7.4.2.Cost Analysis -- 7.4.3.Optimization -- 7.5.Concluding Remarks -- References -- Study Questions/Problems -- 8.1.Introduction -- 8.2.Ocean Thermal Energy Conversion (OTEC) -- 8.2.1.Thermodynamic Modeling of OTEC -- 8.2.1.1.Flat Plate Solar Collector -- 8.2.1.2.Organic Rankine Cycle (ORC) -- 8.2.1.3.PEM Electrolyzer -- 8.2.2.Thermochemical Modeling of a PEM Electrolyzer -- 8.2.3.Exergy Analysis -- 8.2.4.Efficiencies -- 8.2.4.1.Exergy Efficiency -- 8.2.5.Exergoeconomic Analysis -- 8.2.5.1.Flat Plate Solar Collector in OTEC Cycle -- 8.2.5.2.OTEC Cycle -- 8.2.6.Results and Discussion -- 8.2.6.1.Modeling Validation and Simulation Code Results -- 8.2.6.2.Exergy Analysis Results -- 8.2.7.Multi-objective Optimization -- 8.2.7.1.Objectives -- 8.2.7.2.Decision Variables -- 8.2.8.Optimization Results -- 8.3.Solar Based Energy System -- 8.3.1.Thermodynamic Analysis -- 8.3.2.Exergoeconomic Analysis -- 8.3.3.Results and Discussion -- 8.3.3.1.Exergoeconomic Results -- 8.3.4.Sensitivity Analysis -- 8.3.5.Optimization -- 8.3.6.Optimization Results -- 8.4.Hybrid Wind-Photovoltaic-Battery System -- 8.4.1.Modeling -- 8.4.1.1.Photovoltaic (PV) Panel -- 8.4.1.2.Wind Turbine (WT) -- 8.4.1.3.Battery -- 8.4.2.Objective Function, Design Parameters, and Constraints -- 8.4.3.Real Parameter Genetic Algorithm -- 8.4.4.Case Study -- 8.4.5.Results and Discussion -- 8.5.Concluding Remarks -- References -- Study Questions/Problems -- 9.1.Introduction -- 9.2.Steam Power Plants -- 9.2.1.Modeling and Analysis -- 9.2.2.Objective Functions, Design Parameters, and Constraints -- 9.3.Gas Turbine Power Plants -- 9.3.1.Thermodynamic Modeling -- 9.3.1.1.Air Compressor -- 9.3.1.2.Air Preheater (AP) -- 9.3.1.3.Combustion Chamber (CC) -- 9.3.1.4.Gas Turbine -- 9.3.2.Exergy and Exergoeconomic Analyses -- 9.3.3.Environmental Impact Assessment -- 9.3.4.Optimization -- 9.3.4.1.Definition of Objective Functions -- 9.3.4.2.Decision Variables -- 9.3.4.3.Model Validation -- 9.3.5.Results and Discussion -- 9.3.6.Sensitivity Analysis -- 9.3.7.Summary -- 9.4.Combined Cycle Power Plants -- 9.4.1.Thermodynamic Modeling -- 9.4.1.1.Duct Burner -- 9.4.1.2.Heat Recovery Steam Generator (HRSG) -- 9.4.1.3.Steam Turbine (ST) -- 9.4.1.4.Condenser -- 9.4.1.5.Pump -- 9.4.2.Exergy Analysis -- 9.4.3.Optimization -- 9.4.3.1.Definition of Objectives -- 9.4.3.2.Decision Variables -- 9.4.3.3.Constraints -- 9.4.4.Results and Discussion -- 9.5.Concluding Remarks -- References -- Study Questions/Problems -- 10.1.Introduction -- 10.2.Gas Turbine Based CHP System -- 10.2.1.Thermodynamic Modeling and Analyses -- 10.2.1.1.Air Preheater -- 10.2.1.2.Heat Recovery Steam Generator (HRSG) -- 10.2.2.Optimization -- 10.2.2.1.Single Objective Optimization -- 10.2.2.2.Multi-objective Optimization -- 10.2.2.3.Optimization Results -- 10.3.Internal Combustion Engine (ICE) Cogeneration Systems -- 10.3.1.Selection of Working Fluids -- 10.3.2.Thermodynamic Modeling and Analysis -- 10.3.2.1.Internal Combustion Engine -- 10.3.2.2.Organic Rankine Cycle -- 10.3.2.3.Ejector Refrigeration Cycle (ERC) -- 10.3.3.Exergy Analysis -- 10.3.4.Optimization -- 10.3.4.1.Decision Variables -- 10.3.4.2.Multi-objective optimization -- 10.4.Micro Gas Turbine Trigeneration System -- 10.4.1.Thermodynamic Modeling -- 10.4.1.1.Topping Cycle (Brayton Cycle) -- 10.4.1.2.Bottoming Cycle -- 10.4.1.3.Absorption Chiller -- 10.4.1.4.Domestic Water Heater -- 10.4.2.Exergy Analysis -- 10.4.3.Optimization -- 10.4.3.1.Definition of Objectives -- 10.4.3.2.Decision Variables -- 10.4.3.3.Evolutionary Algorithm: Genetic Algorithm -- 10.4.4.Optimization Results -- 10.4.5.Sensitivity Analysis -- 10.5.Biomass Based Trigeneration System -- 10.5.1.Thermodynamic Modeling -- 10.5.1.1.Gasifier -- 10.5.1.2.Multi-effect Desalination Unit -- 10.5.2.Exergy Analysis -- 10.5.3.Optimization -- 10.5.3.1.Decision Variables -- 10.5.4.Optimization Results -- 10.6.Concluding Remarks -- References -- Study Questions/Problems -- 11.1.Introduction -- 11.2.Multigeneration System Based On Gas Turbine Prime Mover -- 11.2.1.Thermodynamic Modeling -- 11.2.1.1.Brayton Cycle -- 11.2.1.2.Bottoming Cycle -- 11.2.1.3.Absorption Chiller -- 11.2.1.4.Domestic Hot Water Heater -- 11.2.1.5.Organic Rankine Cycle -- 11.2.1.6.Heat Recovery Vapor Generator (HRVG) -- 11.2.2.Exergy Analysis -- 11.2.2.1.Exergy Efficiency -- 11.2.3.Economic Analysis -- 11.2.3.1.Brayton Cycle -- 11.2.3.2.Steam Cycle -- 11.2.3.3.ORC Cycle -- 11.2.3.4.Absorption Chiller -- 11.2.3.5.PEM Electrolyzer -- 11.2.3.6.Domestic Hot Water (DHW) Heater -- 11.2.3.7.Capital Recovery Factor (CRF) -- 11.2.4.Multi-objective Optimization -- 11.2.4.1.Definition of Objectives -- 11.2.4.2.Decision Variables -- 11.2.5.Optimization Results -- 11.3.Biomass Based Multigeneration Energy System -- 11.3.1.Thermodynamic Analysis -- 11.3.1.1.Biomass Combustion -- 11.3.1.2.ORC Cycle -- 11.3.1.3.Domestic Water Heater -- 11.3.1.4.Double-effect Absorption Chiller -- 11.3.1.5.Reverse Osmosis (RO) Desalination Unit -- and Contents note continued: 11.3.2.Exergy Analysis of the System -- 11.3.3.Economic Analysis of the System -- 11.3.3.1.Biomass Combustor and Evaporator -- 11.3.3.2.Heating Process Unit -- 11.3.3.3.Reverse Osmosis (RO) Desalination Unit -- 11.3.4.Multi-objective Optimization -- 11.3.4.1.Definition of Objectives -- 11.3.4.2.Decision Variables -- 11.3.5.Optimization Results -- 11.4.Concluding Remarks -- References -- Study Questions/Problems.
- Subject(s)
- ISBN
- 9781118894484 electronic book
1118894480 electronic book
9781118894507 electronic book
1118894502 electronic book
9781118894491
1118894499
9781118894439 hardcover - Bibliography Note
- Includes bibliographical references and index.
View MARC record | catkey: 21045131