Prerequisites -- SEMI-NORMED SPACES. Semi-normed Spaces -- Comparison of Semi-normed Spaces -- Banach, Fréchet and Neumann Spaces -- Hilbert Spaces -- Product, Intersection, Sum and Quotient of Spaces -- CONTINUOUS MAPPINGS. Continuous Mappings -- Images of Sets Under Continuous Mappings -- Properties of Mappings in Metrizable Spaces -- Extension of Mappings, Equicontinuity -- Compactness in Mapping Spaces -- Spaces of Linear or Multilinear Mappings -- WEAK TOPOLOGIES. Duality -- Dual of a Subspace -- Weak Topology -- Properties of Sets for the Weak Topology -- Reflexivity -- Extractable Spaces -- DIFFERENTIAL CALCULUS. Differentiable Mappings -- Differentiation of Multivariable Mappings -- Successive Differentiations -- Derivation of Functions of One Real Variable.