Actions for Coulson and Richardson's chemical engineering. Volume 1A, Fluid flow: fundamentals and applications [electronic resource]
Coulson and Richardson's chemical engineering. Volume 1A, Fluid flow: fundamentals and applications [electronic resource] / Raj Chhabra, V. Shankar
- Author
- Chhabra, R. P.
- Additional Titles
- Chemical engineering and Fluid flow: fundamentals and applications
- Published
- Kidlington, Oxford ; Cambridge, MA : Butterworth-Heinemann, [2018]
- Edition
- Seventh edition.
- Physical Description
- 1 online resource
- Additional Creators
- Shankar, V. and Institution of Chemical Engineers (Great Britain)
Access Online
- Contents
- Machine generated contents note: 1.1.Introduction -- 1.2.Systems of Units -- 1.2.1.The Centimetre-Gram-Second (cgs) System -- 1.2.2.The Metre-Kilogram-Second (mks) System and the Systeme International d' Unites (SI) -- 1.2.3.The Foot-Pound-Second (fps) System -- 1.2.4.The British Engineering System -- 1.2.5.Noncoherent System Employing Pound Mass and Pound Force Simultaneously -- 1.2.6.Derived Units -- 1.2.7.Thermal (Heat) Units -- 1.2.8.Molar Units -- 1.2.9.Electrical Units -- 1.3.Conversion of Units -- 1.4.Dimensional Analysis -- 1.5.Buckingham's la Theorem -- 1.6.Scale Up -- 1.7.Redefinition of the Length and Mass Dimensions -- 1.7.1.Vector and Scalar Quantities -- 1.7.2.Quantity Mass and Inertia Mass -- 1.8.Nomenclature -- References -- Further reading -- 2.1.Introduction -- 2.2.Internal Energy -- 2.3.Types of Fluid -- 2.3.1.The Incompressible Fluid (Liquid) -- 2.3.2.The Ideal Gas -- 2.3.3.The Nonideal Gas -- 2.4.The Fluid in Motion -- 2.4.1.Continuity -- 2.4.2.Momentum Changes in a Fluid -- 2.4.3.Energy of a Fluid in Motion -- 2.4.4.Pressure and Fluid Head -- 2.4.5.Constant Flow Per Unit Area -- 2.4.6.Separation -- 2.5.Pressure-Volume Relationships -- 2.5.1.Incompressible Fluids -- 2.5.2.Compressible Fluids -- 2.6.Rotational or Vortex Motion in a Fluid -- 2.6.1.The Forced Vortex -- 2.6.2.The Free Vortex -- 2.7.Nomenclature -- References -- Further Reading -- 3.1.Introduction -- 3.2.The Nature of Fluid Flow -- 3.2.1.Flow Over a Surface -- 3.2.2.Flow in a Pipe -- 3.3.Newtonian Fluids -- 3.3.1.Shearing Characteristics of a Newtonian Fluid -- 3.3.2.Pressure Drop for Flow of Newtonian Liquids Through a Pipe -- 3.3.3.Reynolds Number and Shear Stress -- 3.3.4.Velocity Distributions and Volumetric Flowrates for Streamline Flow -- 3.3.5.The Transition From Laminar to Turbulent Flow in a Pipe -- 3.3.6.Velocity Distributions and Volumetric Flowrates for Turbulent Flow -- 3.3.7.Flow Through Curved Pipes -- 3.3.8.Miscellaneous Friction Losses -- 3.3.9.Flow Over Banks of Tubes -- 3.3.10.Flow With a Free Surface -- 3.4.Non-Newtonian Fluids -- 3.4.1.Steady-State Shear-Dependent Behaviour -- 3.4.2.Time-Dependent Behaviour -- 3.4.3.Viscoelastic Behaviour -- 3.4.4.Characterisation of Non-Newtonian Fluids -- 3.4.5.Dimensionless Characterisation of Viscoelastic Flows -- 3.4.6.Relation Between Rheology and Structure of Material -- 3.4.7.Streamline Flow in Pipes and Channels of Regular Geometry -- 3.4.8.Turbulent flow -- 3.4.9.The Transition From Laminar to Turbulent Flow -- 3.5.Nomenclature -- References -- Further Reading -- 4.1.Introduction -- 4.2.Flow of Gas Through a Nozzle or Orifice -- 4.2.1.Isothermal Flow -- 4.2.2.Nonisothermal Flow -- 4.3.Velocity of Propagation of a Pressure Wave -- 4.4.Converging-Diverging Nozzles for Gas Flow -- 4.4.1.Maximum Flow and Critical Pressure Ratio -- 4.4.2.The Pressure and Area for Flow -- 4.4.3.Effect of Backpressure on Flow in Nozzle -- 4.5.Flow in a Pipe -- 4.5.1.Energy Balance for Flow of Ideal Gas -- 4.5.2.Isothermal Flow of an Ideal Gas in a Horizontal Pipe -- 4.5.3.Nonisothermal Flow of an Ideal Gas in a Horizontal Pipe -- 4.5.4.Adiabatic Flow of an Ideal Gas in a Horizontal Pipe -- 4.5.5.Flow of Nonideal Gases -- 4.6.Shock Waves -- 4.7.Nomenclature -- References -- Further Reading -- 5.1.Introduction -- 5.2.Two-Phase Gas (Vapour)-Liquid Flow -- 5.2.1.Introduction -- 5.2.2.Flow Regimes and Flow Patterns -- 5.2.3.Hold-Up -- 5.2.4.Pressure, Momentum, and Energy Relations -- 5.2.5.Erosion -- 5.3.Flow of Liquid-Liquid Mixtures -- 5.3.1.Introduction -- 5.3.2.Flow Patterns -- 5.3.3.Average Holdup -- 5.3.4.Pressure Gradient -- 5.4.Flow of Solids-Liquid Mixtures -- 5.4.1.Introduction -- 5.4.2.Homogeneous Nonsettling Suspensions -- 5.4.3.Coarse Solids -- 5.4.4.Coarse Solids in Horizontal Flow -- 5.4.5.Coarse Solids in Vertical Flow -- 5.5.Flow of Gas-Solids Mixtures -- 5.5.1.General Considerations -- 5.5.2.Horizontal Transport -- 5.5.3.Vertical Transport -- 5.5.4.Practical Applications -- 5.6.Nomenclature -- References -- Further Reading -- 6.1.Introduction -- 6.2.Fluid Pressure -- 6.2.1.Static Pressure -- 6.2.2.Pressure Measuring Devices -- 6.2.3.Pressure Signal Transmission-The Differential Pressure Cell -- 6.2.4.Intelligent Electronic Pressure Transmitters -- 6.2.5.Impact Pressure -- 6.3.Measurement of Fluid Flow -- 6.3.1.The Pitot Tube -- 6.3.2.Measurement by Flow Through a Constriction -- 6.3.3.The Orifice Meter -- 6.3.4.The Nozzle -- 6.3.5.The Venturi Meter -- 6.3.6.Pressure Recovery in Orifice-Type Meters -- 6.3.7.Variable Area Meters-Rotameters -- 6.3.8.The Notch or Weir -- 6.3.9.Other Methods of Measuring Flowrates -- 6.4.Nomenclature -- References -- Further Reading -- 7.1.Introduction-Types of Mixing -- 7.1.1.Single-Phase Liquid Mixing -- 7.1.2.Mixing of Immiscible Liquids -- 7.1.3.Gas-Liquid Mixing -- 7.1.4.Liquid-Solids Mixing -- 7.1.5.Gas-Liquid-Solids Mixing -- 7.1.6.Solids-Solids Mixing -- 7.1.7.Miscellaneous Mixing Applications -- 7.2.Mixing Mechanisms -- 7.2.1.Laminar Mixing -- 7.2.2.Turbulent Mixing -- 7.3.Scale-Up of Stirred Vessels -- 7.4.Power Consumption in Stirred Vessels -- 7.4.1.Low Viscosity Systems -- 7.4.2.High Viscosity Systems -- 7.5.Flow Patterns in Stirred Tanks -- 7.6.Rate and Time for Mixing -- 7.7.Mixing Equipment -- 7.7.1.Mechanical Agitation -- 7.7.2.Portable Mixers -- 7.7.3.Extruders -- 7.7.4.Static Mixers -- 7.7.5.Other Types of Mixer -- 7.8.Mixing in Continuous Systems -- 7.9.Nomenclature -- References -- Further Reading -- 8.1.Introduction -- 8.2.Pumping Equipment for Liquids -- 8.2.1.Reciprocating Pump -- 8.2.2.Positive-Displacement Rotary Pumps -- 8.2.3.The Centrifugal Pump -- 8.3.Pumping Equipment for Gases -- 8.3.1.Fans and Rotary Compressors -- 8.3.2.Centrifugal and Turbocompressors -- 8.3.3.The Reciprocating Piston Compressor -- 8.3.4.Power Required for the Compression of Gases -- 8.4.The Use of Compressed Air for Pumping -- 8.4.1.The Air-Lift Pump -- 8.5.Vacuum Pumps -- 8.6.Power Requirements for Pumping Through Pipelines -- 8.6.1.Liquids -- 8.6.2.Gases -- 8.7.Effect of Minor Losses -- 8.8.Nomenclature -- References -- Further Reading -- A.1.Tables of Physical Properties -- Table 1 Thermal conductivities of liquids -- Table 2 Latent heats of vaporisation -- Table 3 Specific heats of liquids -- Table 4 Specific heats at constant pressure of gases and vapours at 101.3 kN/m2 -- Table 5 Viscosity of water -- Table 6 Thermal conductivities of gases and vapours -- Table 7 Viscosities of gases -- Table 8 Viscosities and densities of liquids -- Table 9 Critical constants of gases -- Table 10 Emissivities of surfaces -- A.2.Steam Tables -- Table 11A Properties of saturated steam (S.I. units) -- Table 11B Properties of saturated steam (Centigrade and Fahrenheit units) -- Table 11C Enthalpy of superheated steam, H (kJ/kg) -- Table 11D Entropy of superheated steam, S (kJ/kg K) -- Figure 11A Pressure-enthalpy diagram for water and steam -- Figure 11B Temperature-entropy diagram for water and steam -- A.3.Mathematical Tables -- Table 12 Laplace transforms -- Table 13 Error function and its derivative.
- Summary
- Coulson and Richardson's Chemical Engineering has been fully revised and updated to provide practitioners with an overview of chemical engineering. Each reference book provides clear explanations of theory and thorough coverage of practical applications, supported by case studies. A worldwide team of editors and contributors have pooled their experience in adding new content and revising the old. The authoritative style of the original volumes 1 to 3 has been retained, but the content has been brought up to date and altered to be more useful to practicing engineers. This complete reference to chemical engineering will support you throughout your career, as it covers every key chemical engineering topic. Coulson and Richardson's Chemical Engineering: Volume 1A: Fluid Flow: Fundamentals and Applications, Seventh Edition, covers momentum transfer (fluid flow) which is one of the three main transport processes of interest to chemical engineers. Covers momentum transfer (fluid flow) which is one of the three main transport processes of interest to chemical engineers Includes reference material converted from textbooksExplores topics, from foundational through technicalIncludes emerging applications, numerical methods, and computational tools
- Subject(s)
- ISBN
- 9780128097465 (electronic bk.)
0128097469 (electronic bk.)
0081010990
9780081010990 - Note
- Includes index.
View MARC record | catkey: 22344237