Actions for Designing plastic parts for assembly
Designing plastic parts for assembly / Paul A. Tres
- Author
- Tres, Paul A.
- Published
- Munich : Hanser Publishers ; Cincinnati : Hanser Publications, [2017]
- Edition
- 8th edition updated.
- Physical Description
- 1 online resource
Access Online
- Contents
- Machine generated contents note: 1.1.Basic Resins -- 1.1.1.Thermoplastics -- 1.1.2.Thermosets -- 1.2.Basic Structures -- 1.2.1.Crystalline -- 1.2.2.Amorphous -- 1.2.3.Liquid Crystal Polymer (LCP) -- 1.2.4.New Polymer Technologies -- 1.2.4.1.Inherently Conductive Polymers (ICP) -- 1.2.4.2.Electro-Optic Polymers (EOP) -- 1.2.4.3.Biopolymers -- 1.3.Homopolymer vs. Copolymer -- 1.4.Reinforcements -- 1.5.Fillers -- 1.5.1.Glass Spheres -- 1.5.1.1.Microsphere Properties -- 1.5.1.2.Compounding -- 1.5.1.3.Injection Molding -- 1.5.1.4.Mechanical Properties in Injection-Molded Thermoplastic Applications -- 1.6.Additives -- 1.7.Physical Properties -- 1.7.1.Density and Specific Gravity -- 1.7.2.Elasticity -- 1.7.2.1.Case History: Elasticity and Denier -- 1.7.3.Plasticity -- 1.7.4.Ductility -- 1.7.5.Toughness -- 1.7.6.Brittleness -- 1.7.7.Notch Sensitivity -- 1.7.8.Isotropy -- 1.7.9.Anisotropy -- 1.7.10.Water Absorption -- 1.7.11.Mold Shrinkage -- 1.8.Mechanical Properties -- 1.8.1.Normal Stress -- 1.8.2.Normal Strain -- 1.8.3.Stress-Strain Curve -- 1.9.Creep -- 1.9.1.Introduction -- 1.9.2.Creep Experiments -- 1.9.3.Creep Curves -- 1.9.4.Stress-Relaxation -- 1.10.Impact Properties -- 1.11.Thermal Properties -- 1.11.1.Melting Point -- 1.11.2.Glass Transition Temperature -- 1.11.3.Heat Deflection Temperature -- 1.11.4.Coefficient of Thermal Expansion -- 1.11.5.Thermal Conductivity -- 1.11.6.Thermal Influence on Mechanical Properties -- 1.11.7.Case History: Planetary Gear Life Durability -- 2.1.What Is a Safety Factor -- 2.2.Using the Safety Factors -- 2.2.1.Design Safety Factors -- 2.2.1.1.Design Static Safety Factor -- 2.2.1.2.Design Dynamic Safety Factor -- 2.2.1.3.Design Time-Related Safety Factor -- 2.2.2.Material Properties Safety Factor -- 2.2.3.Processing Safety Factors -- 2.2.4.Operating Condition Safety Factor -- 3.1.Tensile Strength -- 3.1.1.Proportional Limit -- 3.1.2.Elastic Stress Limit -- 3.1.3.Yield Stress -- 3.1.4.Ultimate Stress -- 3.2.Compressive Stress -- 3.3.Shear Stress -- 3.4.Torsion Stress -- 3.5.Elongations -- 3.5.1.Tensile Strain -- 3.5.2.Compressive Strain -- 3.5.3.Shear Strain -- 3.6.True Stress and Strain vs. Engineering Stress and Strain -- 3.7.Poisson's Ratio -- 3.8.Modulus of Elasticity -- 3.8.1.Young's Modulus -- 3.8.2.Tangent Modulus -- 3.8.3.Secant Modulus -- 3.8.4.Creep (Apparent) Modulus -- 3.8.5.Shear Modulus -- 3.8.6.Flexural Modulus -- 3.8.7.The Use of Various Moduli -- 3.9.Stress Relations -- 3.9.1.Introduction -- 3.9.2.Experiment -- 3.9.3.Equivalent Stress -- 3.9.4.Maximum Normal Stress -- 3.9.5.Maximum Normal Strain -- 3.9.6.Maximum Shear Stress -- 3.9.7.Maximum Deformation Energy -- 3.10.ABCs of Plastic Part Design -- 3.10.1.Constant Wall -- 3.10.2.Fillets -- 3.10.3.Boss Design -- 3.10.4.Rib Design -- 3.10.5.Case History: Ribs -- 3.11.Conclusions -- 4.1.Material Considerations -- 4.1.1.Linear Material -- 4.1.2.Nonlinear Materials -- 4.2.Geometry -- 4.2.1.Linear Geometry -- 4.2.2.Nonlinear Geometry -- 4.3.Finite Element Analysis (FEA) -- 4.3.1.FEA Method Application -- 4.3.2.Using FEA Method -- 4.3.3.Most Common FEA Codes -- 4.4.Conclusions -- 5.1.Ultrasonic Welding -- 5.1.1.Ultrasonic Equipment -- 5.1.2.Horn Design -- 5.1.3.Ultrasonic Welding Techniques -- 5.1.4.Control Methods -- 5.1.4.1.Common Issues with Welding -- 5.1.4.2.Joint Design -- 5.1.4.3.Butt Joint Design -- 5.1.4.4.Shear Joint Design -- 5.1.4.5.Torsional Ultrasonic Welding -- 5.1.4.6.Case History: Welding Dissimilar Polymers -- 5.2.Ultrasonic (Heat) Staking -- 5.2.1.Standard Stake Design -- 5.2.2.Flush Stake Design -- 5.2.3.Spherical Stake Design -- 5.2.4.Hollow (Boss) Stake Design -- 5.2.5.Knurled Stake Design -- 5.3.Ultrasonic Spot Welding -- 5.4.Ultrasonic Swaging -- 5.5.Ultrasonic Stud Welding -- 5.6.Spin Welding -- 5.6.1.Process -- 5.6.2.Equipment -- 5.6.3.Welding Parameters -- 5.6.4.Joint Design -- 5.7.Hot Plate Welding -- 5.7.1.Process -- 5.7.2.Joint Design -- 5.8.Vibration Welding -- 5.8.1.Process -- 5.8.2.Equipment -- 5.8.3.Joint Design -- 5.8.4.Common Issues with Vibration Welding -- 5.9.Electromagnetic Welding -- 5.9.1.Equipment -- 5.9.2.Process -- 5.9.3.Joint Design -- 5.10.Radio Frequency (RF) Welding -- 5.10.1.Equipment -- 5.10.2.Process -- 5.11.Laser Welding -- 5.11.1.Equipment -- 5.11.2.Process -- 5.11.3.Noncontact Welding -- 5.11.4.Transmission Welding -- 5.11.5.Intermediate Film & ClearWeld[™] Welding -- 5.11.6.Polymers -- 5.11.7.Applications -- 5.12.Conclusion -- 6.1.Introduction -- 6.2.Definitions and Notations -- 6.3.Geometric Definitions -- 6.4.Safety Factors -- 6.5.Creep -- 6.6.Loads -- 6.7.Press Fit Theory -- 6.8.Design Algorithm -- 6.9.Case History: Plastic Shaft and Plastic Hub -- 6.9.1.Shaft and Hub Made of Different Polymers -- 6.9.2.Safety Factor Selection -- 6.9.3.Material Properties -- 6.9.4.Shaft Material Properties at 23°C -- 6.9.4.1.Shaft Material Properties at 93°C -- 6.9.4.2.Creep Curves at 23°C -- 6.9.4.3.Creep at 93°C -- 6.9.4.4.Pulley at 23°C -- 6.9.4.5.Pulley at 93°C -- 6.9.4.6.Creep, Pulley at 23°C -- 6.9.4.7.Creep, Pulley at 93°C -- 6.10.Solutions: Plastic Shaft, Plastic Hub -- 6.10.1.Case A -- 6.10.2.Case B -- 6.10.3.Case C -- 6.10.4.Case D -- 6.11.Case History: Metal Ball Bearing and Plastic Hub -- 6.11.1.Fusible Core Injection Molding -- 6.11.2.Upper Intake Manifold Background -- 6.11.3.Design Algorithm -- 6.11.4.Material Properties -- 6.11.4.1.CAMPUS -- 6.11.5.Solution -- 6.11.5.1.Necessary IF at Ambient Temperature -- 6.11.5.2.IF Available at 118°C -- 6.11.5.3.IF Verification at-40°C -- 6.11.5.4.Verification of Stress Level at-40°C, Time = 0 -- 6.11.5.5.Stress Level at-40°C, Time = 5,000 h -- 6.11.5.6.Stress Level at 23°C, Time = 5,000 h -- 6.11.5.7.Stress Level at 118°C, Time = 5,000 h -- 6.12.Successful Press Fits -- 6.13.Conclusion -- 7.1.Introduction -- 7.2.Classic Design for PP and PE -- 7.3.Common Living Hinge Design -- 7.4.Basic Design for Engineering Plastics -- 7.5.Living Hinge Design Analysis -- 7.5.1.Elastic Strain Due to Bending -- 7.5.1.1.Assumptions -- 7.5.1.2.Geometric Conditions -- 7.5.1.3.Strain Due to Bending -- 7.5.1.4.Stress Due to Bending -- 7.5.1.5.Closing Angle of the Hinge -- 7.5.1.6.Bending Radius of the Hinge -- 7.5.2.Plastic Strain Due to Pure Bending -- 7.5.2.1.Assumptions -- 7.5.2.2.Strain Due to Bending -- 7.5.3.Plastic Strain Due to a Mixture of Bending and Tension -- 7.5.3.1.Tension Strain -- 7.5.3.2.Bending Strain -- 7.5.3.3.Neutral Axis Position -- 7.5.3.4.Hinge Length -- 7.5.3.5.Elastic Portion of the Hinge Thickness -- 7.6.Computer Flow Chart -- 7.6.1.Computer Notations -- 7.7.Computer Flow Chart Equations -- 7.8.Example: Case History -- 7.8.1.World-Class Connector -- 7.8.1.1.Calculations for the "Right Way" Assembly -- 7.8.1.2.Calculations for the "Wrong Way" Assembly -- 7.8.2.Comparison Material -- 7.8.2.1."Right Way" Assembly -- 7.8.2.2."Wrong Way" Assembly -- 7.8.3.Ignition Cable Bracket -- 7.8.3.1.Initial Design -- 7.8.3.2.Improved Design -- 7.9.Processing Errors for Living Hinges -- 7.10.Coined Hinges -- 7.11.Oil-Can Designs -- 7.12.Conclusion -- 7.13.Exercise -- 8.1.Introduction -- 8.2.Material Considerations -- 8.3.Design Considerations -- 8.3.1.Safety Factors -- 8.4.Snap Fit Theory -- 8.4.1.Notations -- 8.4.2.Geometric Conditions -- 8.4.3.Stress/Strain Curve and Formulae -- 8.4.4.Instantaneous Moment of Inertia -- 8.4.5.Angle of Deflection -- 8.4.6.Integral Solution -- 8.4.7.Equation of Deflection -- 8.4.8.Integral Solution -- 8.4.9.Maximum Deflection -- 8.4.10.Self-Locking Angle -- 8.5.Case History: One-Way Continuous Beam with Rectangular Cross Section -- 8.5.1.Geometrical Model -- 8.6.Annular Snap Fits -- 8.6.1.Case History: Annular Snap Fit, Rigid Beam with Soft Mating Part -- 8.6.2.Notations -- 8.6.3.Geometric Definitions -- 8.6.4.Material Selections and Properties -- 8.6.5.Basic Formulas -- 8.6.6.Angle of Assembly -- 8.6.7.Case History: Digital Wristwatch -- 8.7.Torsional Snap Fits -- 8.7.1.Notations -- 8.7.2.Basic Formulae -- 8.7.3.Material Properties -- 8.7.4.Solution -- 8.8.Case History: Injection Blow Molded Bottle Assembly -- 8.9.Tooling -- 8.10.Case History: Snap Fits That Kill -- 8.11.Assembly Procedures -- 8.12.Issues with Snap Fitting -- 8.13.Serviceability -- 8.14.Exercise -- 8.14.1.Solution -- 8.15.Conclusions -- 9.1.Failure Theories -- 9.2.Surface Energy -- 9.3.Surface Treatment -- 9.4.Types of Adhesives -- 9.5.Advantages and Limitations of Adhesives -- 9.6.Stress Cracking in Bonded Joints of Adhesives -- 9.7.Joint Design -- 9.8.Conclusion -- 10.1.Overmolding -- 10.2.In-Mold Assembly -- 10.3.Joint Design -- 10.4.Tool Design -- 10.5.Case Histories: Automotive IMA -- 10.6.Conclusion -- 11.1.Thread Forming -- 11.2.Case History: Automotive Undercarriage Splash Shield -- 11.3.Thread Cutting -- 11.4.Conclusion.
- Subject(s)
- ISBN
- 9781569906699 (electronic bk.)
1569906696 (electronic bk.)
9781523112913 (electronic bk.)
1523112913 (electronic bk.)
9781569906682 (hardcover) - Bibliography Note
- Includes bibliographical references and index.
View MARC record | catkey: 23484721