Beginning inflation in an inhomogeneous universe [electronic resource].
- Published:
- Washington, D.C. : United States. Dept. of Energy. Office of Science, 2016.
Oak Ridge, Tenn. : Distributed by the Office of Scientific and Technical Information, U.S. Dept. of Energy - Physical Description:
- 15 pages : digital, PDF file
- Additional Creators:
- SLAC National Accelerator Laboratory, United States. Department of Energy. Office of Science, and United States. Department of Energy. Office of Scientific and Technical Information
Access Online
- Restrictions on Access:
- Free-to-read Unrestricted online access
- Summary:
- Using numerical solutions of the full Einstein field equations coupled to a scalar inflaton field in 3+1 dimensions, we study the conditions under which a universe that is initially expanding, highly inhomogeneous and dominated by gradient energy can transition to an inflationary period. If the initial scalar field variations are contained within a sufficiently flat region of the inflaton potential, and the universe is spatially flat or open on average, inflation will occur following the dilution of the gradient and kinetic energy due to expansion. This is the case even when the scale of the inhomogeneities is comparable to the initial Hubble length, and overdense regions collapse and form black holes, because underdense regions continue expanding, allowing inflation to eventually begin. In conclusion, this establishes that inflation can arise from highly inhomogeneous initial conditions and solve the horizon and flatness problems, at least as long as the variations in the scalar field do not include values that exceed the inflationary plateau.
- Report Numbers:
- E 1.99:1325925
- Subject(s):
- Note:
- Published through SciTech Connect.
09/06/2016.
Journal of Cosmology and Astroparticle Physics 2016 09 ISSN 1475-7516 AM
William E. East; Matthew Kleban; Andrei Linde; Leonardo Senatore. - Funding Information:
- AC02-76SF00515
View MARC record | catkey: 23494672