Actions for A general strategy to construct small molecule biosensors in eukaryotes [electronic resource].
A general strategy to construct small molecule biosensors in eukaryotes [electronic resource].
- Published
- Washington, D.C. : United States. Dept. of Energy, 2015.
Oak Ridge, Tenn. : Distributed by the Office of Scientific and Technical Information, U.S. Dept. of Energy - Physical Description
- 23 pages : digital, PDF file
- Additional Creators
- Harvard University, United States. Department of Energy, and United States. Department of Energy. Office of Scientific and Technical Information
Access Online
- Restrictions on Access
- Free-to-read Unrestricted online access
- Summary
Biosensors for small molecules can be used in applications that range from metabolic engineering to orthogonal control of transcription. Here, we produce biosensors based on a ligand-binding domain (LBD) by using a method that, in principle, can be applied to any target molecule. The LBD is fused to either a fluorescent protein or a transcriptional activator and is destabilized by mutation such that the fusion accumulates only in cells containing the target ligand. We illustrate the power of this method by developing biosensors for digoxin and progesterone. Addition of ligand to yeast, mammalian, or plant cells expressing a biosensor activates transcription with a dynamic range of up to ~100-fold. We use the biosensors to improve the biotransformation of pregnenolone to progesterone in yeast and to regulate CRISPR activity in mammalian cells. As a result, this work provides a general methodology to develop biosensors for a broad range of molecules in eukaryotes.
- Report Numbers
- E 1.99:1258761
- Subject(s)
- Note
- Published through SciTech Connect.
12/29/2015.
eLife 4 ISSN 2050-084X AM
Justin Feng; Benjamin W. Jester; Christine E. Tinberg; Daniel J. Mandell; Mauricio S. Antunes; Raj Chari; Kevin J. Morey; Xavier Rios; June I. Medford; George M. Church; Stanley Fields; David Baker. - Funding Information
- FG02-02ER63445