Enabling X-ray free electron laser crystallography for challenging biological systems from a limited number of crystals [electronic resource].
- Published:
- Washington, D.C. : United States. Dept. of Energy. Office of Science, 2015.
Oak Ridge, Tenn. : Distributed by the Office of Scientific and Technical Information, U.S. Dept. of Energy - Physical Description:
- 29 pages : digital, PDF file
- Additional Creators:
- Lawrence Berkeley National Laboratory, United States. Department of Energy. Office of Science, and United States. Department of Energy. Office of Scientific and Technical Information
Access Online
- Restrictions on Access:
- Free-to-read Unrestricted online access
- Summary:
- There is considerable potential for X-ray free electron lasers (XFELs) to enable determination of macromolecular crystal structures that are difficult to solve using current synchrotron sources. Prior XFEL studies often involved the collection of thousands to millions of diffraction images, in part due to limitations of data processing methods. We implemented a data processing system based on classical post-refinement techniques, adapted to specific properties of XFEL diffraction data. When applied to XFEL data from three different proteins collected using various sample delivery systems and XFEL beam parameters, our method improved the quality of the diffraction data as well as the resulting refined atomic models and electron density maps. Moreover, the number of observations for a reflection necessary to assemble an accurate data set could be reduced to a few observations. In conclusion, these developments will help expand the applicability of XFEL crystallography to challenging biological systems, including cases where sample is limited.
- Report Numbers:
- E 1.99:1257268
- Subject(s):
- Note:
- Published through SciTech Connect.
03/17/2015.
eLife 4 ISSN 2050-084X AM
Monarin Uervirojnangkoorn; Oliver B. Zeldin; Artem Y. Lyubimov; Johan Hattne; Aaron S. Brewster; Nicholas K. Sauter; Axel T. Brunger; William I. Weis. - Funding Information:
- GM103393
GM095887
AC02-05CH11231
GM102520
View MARC record | catkey: 23499237