Analytical platform evaluation for quantification of ERG in prostate cancer using protein and mRNA detection methods [electronic resource].
- Published:
- Washington, D.C. : United States. Dept. of Energy, 2015.
Oak Ridge, Tenn. : Distributed by the Office of Scientific and Technical Information, U.S. Dept. of Energy - Physical Description:
- Page 54 : digital, PDF file
- Additional Creators:
- Pacific Northwest National Laboratory (U.S.), United States. Department of Energy, and United States. Department of Energy. Office of Scientific and Technical Information
Access Online
- Restrictions on Access:
- Free-to-read Unrestricted online access
- Summary:
- Background: The established methods for detecting prostate cancer (CaP) are based on tests using PSA (blood), PCA3 (urine), and AMACR (tissue) as biomarkers in patient samples. The demonstration of ERG oncoprotein overexpression due to gene fusion in CaP has thus provided ERG as an additional biomarker. Based on this, we hypothesized that ERG protein quantification methods can be of use in the diagnosis of prostate cancer. Methods: Therefore, an antibody-free assay for ERG3 protein detection was developed based on PRISM (high-pressure high-resolution separations with intelligent selection and multiplexing)-SRM (selected reaction monitoring) mass spectrometry. We utilized TMPRSS2-ERG positive VCaP and TMPRSS2-ERG negative LNCaP cells to simulate three different sample types (cells, tissue, and post-DRE urine sediment). Results: Recombinant ERG3 protein spiked into LNCaP cell lysates could be detected at levels as low as 20 pg by PRISM-SRM analysis. The sensitivity of the PRISM-SRM assay was around approximately 10,000 VCaP cells in a mixed cell population model of VCaP and LNCaP cells. Interestingly, ERG protein could be detected in as few as 600 VCaP cells spiked into female urine. The sensitivity of the in-house enzyme-linked immunosorbent assay (ELISA) was similar to the PRISM-SRM assay, with detection of 30 pg of purified recombinant ERG3 protein and 10,000 VCaP cells. On the other hand, qRT-PCR exhibited a higher sensitivity, as TMPRSS2-ERG transcripts were detected in as few as 100 VCaP cells, in comparison to NanoString methodologies which detected ERG from 10,000 cells. Conclusions: Based on this data, we propose that the detection of both ERG transcriptional products with RNA-based assays, as well as protein products of ERG using PRISM-SRM assays, may be of clinical value in developing diagnostics and prognostics assays for prostate cancer given their sensitivity, specificity, and reproducibility.
- Report Numbers:
- E 1.99:pnnl-sa-107827
pnnl-sa-107827 - Subject(s):
- Other Subject(s):
- Note:
- Published through SciTech Connect.
01/01/2015.
"pnnl-sa-107827"
"48505"
"400412000"
Journal of Translational Medicine 13 1 ISSN 1479-5876 AM
He, Jintang; Schepmoes, Athena A.; Shi, Tujin; Wu, Chaochao; Fillmore, Thomas L.; Gao, Yuqian; Smith, Richard D.; Qian, Weijun; Rodland, Karin D.; Liu, Tao; Camp, David G.; Rastogi, Anshu; Tan, Shyh-Han; Yan, Wusheng; Mohamed, Ahmed A.; Huang, Wei; Banerjee, Sreedatta; Kagan, Jacob; Srivastava, Sudhir; McLeod, David; Srivastava, Shiv; Petrovics, Gyorgy; Dobi, Albert; Srinivasan, Alagarsamy. - Funding Information:
- AC05-76RL01830
View MARC record | catkey: 23499876