Phosphorylation of RACK1 in plants [electronic resource].
- Published:
- Washington, D.C. : United States. Dept. of Energy. Office of Science, 2015.
Oak Ridge, Tenn. : Distributed by the Office of Scientific and Technical Information, U.S. Dept. of Energy - Physical Description:
- Article numbers e1,022,013 : digital, PDF file
- Additional Creators:
- Oak Ridge National Laboratory, United States. Department of Energy. Office of Science, and United States. Department of Energy. Office of Scientific and Technical Information
Access Online
- Restrictions on Access:
- Free-to-read Unrestricted online access
- Summary:
- Receptor for Activated C Kinase 1 (RACK1) is a versatile scaffold protein that interacts with a large, diverse group of proteins to regulate various signaling cascades. RACK1 has been shown to regulate hormonal signaling, stress responses and multiple processes of growth and development in plants. However, little is known about the molecular mechanism underlying these regulations. Recently, it has been demonstrated that Arabidopsis RACK1 is phosphorylated by an atypical serine/threonine protein kinase, WITH NO LYSINE 8 (WNK8). Furthermore, RACK1 phosphorylation by WNK8 negatively regulates RACK1 function by influencing its protein stability. In conclusion, these findings promote a new regulatory system in which the action of RACK1 is controlled by phosphorylation and subsequent protein degradation.
- Report Numbers:
- E 1.99:1265401
- Subject(s):
- Other Subject(s):
- Note:
- Published through SciTech Connect.
08/31/2015.
Plant Signaling & Behavior 10 8 ISSN 1559-2316 AM
Jay -Gui Chen. - Funding Information:
- AC05-00OR22725
View MARC record | catkey: 23500122