Actions for Resistive switching phenomena [electronic resource] : A review of statistical physics approaches
Resistive switching phenomena [electronic resource] : A review of statistical physics approaches
- Published
- Washington, D.C. : United States. Dept. of Energy. Office of Basic Energy Sciences, 2015.
Oak Ridge, Tenn. : Distributed by the Office of Scientific and Technical Information, U.S. Dept. of Energy - Physical Description
- 031,303 : digital, PDF file
- Additional Creators
- Oak Ridge National Laboratory, United States. Department of Energy. Office of Basic Energy Sciences, and United States. Department of Energy. Office of Scientific and Technical Information
Access Online
- Restrictions on Access
- Free-to-read Unrestricted online access
- Summary
- Here we report that resistive switching (RS) phenomena are reversible changes in the metastable resistance state induced by external electric fields. After discovery ~50 years ago, RS phenomena have attracted great attention due to their potential application in next-generation electrical devices. Considerable research has been performed to understand the physical mechanisms of RS and explore the feasibility and limits of such devices. There have also been several reviews on RS that attempt to explain the microscopic origins of how regions that were originally insulators can change into conductors. However, little attention has been paid to the most important factor in determining resistance: how conducting local regions are interconnected. Here, we provide an overview of the underlying physics behind connectivity changes in highly conductive regions under an electric field. We first classify RS phenomena according to their characteristic current–voltage curves: unipolar, bipolar, and threshold switchings. Second, we outline the microscopic origins of RS in oxides, focusing on the roles of oxygen vacancies: the effect of concentration, the mechanisms of channel formation and rupture, and the driving forces of oxygen vacancies. Third, we review RS studies from the perspective of statistical physics to understand connectivity change in RS phenomena. We discuss percolation model approaches and the theory for the scaling behaviors of numerous transport properties observed in RS. Fourth, we review various switching-type conversion phenomena in RS: bipolar-unipolar, memory-threshold, figure-of-eight, and counter-figure-of-eight conversions. Finally, we review several related technological issues, such as improvement in high resistance fluctuations, sneak-path problems, and multilevel switching problems.
- Report Numbers
- E 1.99:1263835
- Subject(s)
- Note
- Published through SciTech Connect.
08/31/2015.
"KC0202020"
"ERKCS80"
Applied Physics Reviews 2 3 ISSN 1931-9401; APRPG5 AM
Jae Sung Lee; Shinbuhm Lee; Tae Won Noh. - Funding Information
- AC05-00OR22725
View MARC record | catkey: 23503769