Solid-state microrefrigerator [electronic resource].
- Published:
- Washington, D.C. : United States. Dept. of Energy, 2003.
Oak Ridge, Tenn. : Distributed by the Office of Scientific and Technical Information, U.S. Dept. of Energy - Additional Creators:
- United States. Department of Energy and United States. Department of Energy. Office of Scientific and Technical Information
Access Online
- Restrictions on Access:
- Free-to-read Unrestricted online access
- Summary:
- A normal-insulator-superconductor (NIS) microrefrigerator in which a superconducting single crystal is both the substrate and the superconducting electrode of the NIS junction. The refrigerator consists of a large ultra-pure superconducting single crystal and a normal metal layer on top of the superconducting crystal, separated by a thin insulating layer. The superconducting crystal can be either cut from bulk material or grown as a thick epitaxial film. The large single superconducting crystal allows quasiparticles created in the superconducting crystal to easily diffuse away from the NIS junction through the lattice structure of the crystal to normal metal traps to prevent the quasiparticles from returning across the NIS junction. In comparison to thin film NIS refrigerators, the invention provides orders of magnitude larger cooling power than thin film microrefrigerators. The superconducting crystal can serve as the superconducting electrode for multiple NIS junctions to provide an array of microrefrigerators. The normal electrode can be extended and supported by microsupports to provide support and cooling of sensors or arrays of sensors.
- Report Numbers:
- E 1.99:6,581,387
6,581,387 - Subject(s):
- Note:
- Published through SciTech Connect.
06/24/2003.
"6,581,387"
Ullom, Joel.
View MARC record | catkey: 23759709