One- and Two-Equation Models to Simulate Ion Transport in Charged Porous Electrodes [electronic resource].
- Published
- Washington, D.C. : United States. Dept. of Energy, 2018.
Oak Ridge, Tenn. : Distributed by the Office of Scientific and Technical Information, U.S. Dept. of Energy - Physical Description
- Article numbers 4 : digital, PDF file
- Additional Creators
- Oak Ridge National Laboratory, United States. Department of Energy, and United States. Department of Energy. Office of Scientific and Technical Information
Access Online
- Restrictions on Access
- Free-to-read Unrestricted online access
- Summary
- Energy storage in porous capacitor materials, capacitive deionization (CDI) for water desalination, capacitive energy generation, geophysical applications, and removal of heavy ions from wastewater streams are some examples of processes where understanding of ionic transport processes in charged porous media is very important. In this work, one- and two-equation models are derived to simulate ionic transport processes in heterogeneous porous media comprising two different pore sizes. It is based on a theory for capacitive charging by ideally polarizable porous electrodes without Faradaic reactions or specific adsorption of ions. A two-step volume averaging technique is used to derive the averaged transport equations for multi-ionic systems without any further assumptions, such as thin electrical double layers or Donnan equilibrium. A comparison between both models is presented. The effective transport parameters for isotropic porous media are calculated by solving the corresponding closure problems. An approximate analytical procedure is proposed to solve the closure problems. Numerical and theoretical calculations show that the approximate analytical procedure yields adequate solutions. Lastly, a theoretical analysis shows that the value of interphase pseudo-transport coefficients determines which model to use.
- Report Numbers
- E 1.99:1422528
- Subject(s)
- Other Subject(s)
- Note
- Published through SciTech Connect.
01/19/2018.
Colloids and Interfaces 2 1 ISSN 2504-5377 AM
Jorge Gabitto; Costas Tsouris. - Funding Information
- AC05-00OR22725
View MARC record | catkey: 23764908