Unraveling the mechanisms underlying pulse dynamics of soil respiration in tropical dry forests [electronic resource].
- Published:
- Washington, D.C. : United States. Dept. of Energy. Office of Science, 2016.
Oak Ridge, Tenn. : Distributed by the Office of Scientific and Technical Information, U.S. Dept. of Energy - Physical Description:
- Article numbers 105,005 : digital, PDF file
- Additional Creators:
- United States. Department of Energy. Office of Science and United States. Department of Energy. Office of Scientific and Technical Information
Access Online
- Restrictions on Access:
- Free-to-read Unrestricted online access
- Summary:
- Tropical dry forests are already undergoing changes in the quantity and timing of rainfall, but there is great uncertainty over how these shifts will affect belowground carbon (C) cycling. While it has long been known that dry soils quickly release carbon dioxide (CO2) upon rewetting, the mechanisms underlying the so-called 'Birch effect' are still debated. Here, we quantified soil respiration pulses and their biotic predictors in response to simulated precipitation events in a regenerating tropical dry forest in Costa Rica. We also simulated the observed rewetting CO2 pulses with two soil carbon models: a conventional model assuming first-order decay rates of soil organic matter, and an enzyme-catalyzed model with Michaelis–Menten kinetics. We found that rewetting of dry soils produced an immediate and dramatic pulse of CO2, accompanied by rapid immobilization of nitrogen into the microbial biomass. However, the magnitude of the rewetting CO2 pulse was highly variable at fine spatial scales, and was well correlated with the size of the dissolved organic C pool prior to rewetting. Both the enzyme-catalyzed and conventional models were able to reproduce the Birch effect when respiration was coupled directly to microbial C uptake, although models differed in their ability to yield realistic estimates of SOC and microbial biomass pool sizes and dynamics. Lastly, our results suggest that changes in the timing and intensity of rainfall events in tropical dry forests will exert strong influence on ecosystem C balance by affecting the dynamics of microbial biomass growth.
- Report Numbers:
- E 1.99:1364415
- Subject(s):
- Other Subject(s):
- Note:
- Published through SciTech Connect.
10/14/2016.
Environmental Research Letters 11 10 ISSN 1748-9326 AM
Bonnie G. Waring; Jennifer S. Powers.
Univ. of Minnesota, St. Paul, MN (United States) - Funding Information:
- SC0014363
View MARC record | catkey: 23776275