Actions for An observational study of entrainment rate in deep convection [electronic resource].
An observational study of entrainment rate in deep convection [electronic resource].
- Published
- Washington, D.C. : United States. Dept. of Energy. Office of Science, 2015.
Oak Ridge, Tenn. : Distributed by the Office of Scientific and Technical Information, U.S. Dept. of Energy - Physical Description
- pages 1,362-1,376 : digital, PDF file
- Additional Creators
- Brookhaven National Laboratory, United States. Department of Energy. Office of Science, and United States. Department of Energy. Office of Scientific and Technical Information
Access Online
- Restrictions on Access
- Free-to-read Unrestricted online access
- Summary
- This study estimates entrainment rate and investigates its relationships with cloud properties in 156 deep convective clouds based on in-situ aircraft observations during the TOGA-COARE (Tropical Ocean Global Atmosphere Coupled Ocean Atmosphere Response Experiment) field campaign over the western Pacific. To the authors’ knowledge, this is the first study on the probability density function of entrainment rate, the relationships between entrainment rate and cloud microphysics, and the effects of dry air sources on the calculated entrainment rate in deep convection from an observational perspective. Results show that the probability density function of entrainment rate can be well fitted by lognormal, gamma or Weibull distribution, with coefficients of determination being 0.82, 0.85 and 0.80, respectively. Entrainment tends to reduce temperature, water vapor content and moist static energy in cloud due to evaporative cooling and dilution. Inspection of the relationships between entrainment rate and microphysical properties reveals a negative correlation between volume-mean radius and entrainment rate, suggesting the potential dominance of homogeneous mechanism in the clouds examined. The entrainment rate and environmental water vapor content show similar tendencies of variation with the distance of the assumed environmental air to the cloud edges. Their variation tendencies are non-monotonic due to the relatively short distance between adjacent clouds.
- Report Numbers
- E 1.99:bnl--108399-2015-ja
bnl--108399-2015-ja - Subject(s)
- Other Subject(s)
- Note
- Published through SciTech Connect.
09/22/2015.
"bnl--108399-2015-ja"
"KP1703020"
Atmosphere (Basel) 6 9 ISSN 2073-4433; ATMOCZ AM
Guo, Xiaohao; Lu, Chunsong; Zhao, Tianliang; Zhang, Guang; Liu, Yangang. - Funding Information
- SC00112704
2016-BNL-EE631EECA-Budg
View MARC record | catkey: 23776491