Actions for Observations and Modeling of the Green Ocean Amazon 2014
Observations and Modeling of the Green Ocean Amazon 2014/15 [electronic resource] : Parsivel2 Field Campaign Report
- Published
- Washington, D.C. : United States. Dept. of Energy. Office of Science, 2016.
Oak Ridge, Tenn. : Distributed by the Office of Scientific and Technical Information, U.S. Dept. of Energy - Physical Description
- 12 pages : digital, PDF file
- Additional Creators
- Atmospheric Radiation Measurement Program (U.S.), United States. Department of Energy. Office of Science, and United States. Department of Energy. Office of Scientific and Technical Information
Access Online
- Restrictions on Access
- Free-to-read Unrestricted online access
- Summary
- One of the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility’s Parsivel2 disdrometers was deployed at the first ARM Mobile Facility (AMF1) T3 site in Manacapuru, Brazil at the beginning of the second Green Ocean Amazon (GoAmazon)2014/15 intensive operational period (IOP2) in September 2014 through the end of the field campaign in December 2015. The Parsivel2 provided one-minute drop-size distribution (DSD) observations that have already been used for a number of applications related to GoAmazon2014/15 science objectives. The first use was the creation of a reflectivity-rain rate (Z-R) relation enabling the calculation of rain rates from the Brazilian Sistema de Protecao da Amazonia (SIPAM) S-band operational radar in Manaus. The radar-derived rainfall is an important constraint for the variational analysis of a large-scale forcing data set, which was recently released for the two IOPs that took place in the 2014 wet and transition seasons, respectively. The SIPAM radar rainfall is also being used to validate a number of cloud-resolving model simulations being run for the campaign. A second use of the Parsivel2 DSDs has been to provide a necessary reference point to calibrate the vertical velocity retrievals from the AMF1 W Band ARM Cloud Radar (WACR) cloud-profiling and ultra-high-frequency (UHF) wind-profiling instruments. Accurate retrievals of in-cloud vertical velocities are important to understand the microphysical and kinematic properties of Amazonian convective clouds and their interaction with the land surface and atmospheric aerosols. Further use of the Parsivel2 DSD observations can be made to better understand precipitation characteristics and their variability during GoAmazon2014/15.
- Report Numbers
- E 1.99:doe/sc--arm-16-042
doe/sc--arm-16-042 - Subject(s)
- Other Subject(s)
- Note
- Published through SciTech Connect.
07/01/2016.
"doe/sc--arm-16-042"
Schumacher, Courtney [Texas A & M Univ., College Station, TX (United States)]. - Funding Information
- AC05-7601830
View MARC record | catkey: 23776780