Process-level model evaluation [electronic resource] : a snow and heat transfer metric
- Published:
- Washington, D.C. : United States. Dept. of Energy. Office of Science, 2017.
Oak Ridge, Tenn. : Distributed by the Office of Scientific and Technical Information, U.S. Dept. of Energy - Physical Description:
- pages 989-996 : digital, PDF file
- Additional Creators:
- Lawrence Berkeley National Laboratory, United States. Department of Energy. Office of Science, and United States. Department of Energy. Office of Scientific and Technical Information
Access Online
- Restrictions on Access:
- Free-to-read Unrestricted online access
- Summary:
Land models require evaluation in order to understand results and guide future development. Examining functional relationships between model variables can provide insight into the ability of models to capture fundamental processes and aid in minimizing uncertainties or deficiencies in model forcing. This study quantifies the proficiency of land models to appropriately transfer heat from the soil through a snowpack to the atmosphere during the cooling season (Northern Hemisphere: October–March). Using the basic physics of heat diffusion, we investigate the relationship between seasonal amplitudes of soil versus air temperatures due to insulation from seasonal snow. Observations demonstrate the anticipated exponential relationship of attenuated soil temperature amplitude with increasing snow depth and indicate that the marginal influence of snow insulation diminishes beyond an
effective snow depth
of about 50 cm. A snow and heat transfer metric (SHTM) is developed to quantify model skill compared to observations. Land models within the CMIP5 experiment vary widely in SHTM scores, and deficiencies can often be traced to model structural weaknesses. The SHTM value for individual models is stable over 150 years of climate, 1850–2005, indicating that the metric is insensitive to climate forcing and can be used to evaluate each model's representation of the insulation process.- Report Numbers:
- E 1.99:1393225
- Subject(s):
- Note:
- Published through SciTech Connect.
04/20/2017.
"ark:/13030/qt5mh0b02n"
The Cryosphere (Online) 11 2 ISSN 1994-0424 AM
Andrew G. Slater; David M. Lawrence; Charles D. Koven. - Funding Information:
- AC02-05CH11231
FC03-97ER62402/A010