Mapping the genome of meta-generalized gradient approximation density functionals [electronic resource] : The search for B97M-V.
- Published
- Washington, D.C. : United States. Dept. of Energy. Office of Basic Energy Sciences, 2015.
Oak Ridge, Tenn. : Distributed by the Office of Scientific and Technical Information, U.S. Dept. of Energy - Physical Description
- Article numbers 074,111 : digital, PDF file
- Additional Creators
- Lawrence Berkeley National Laboratory, United States. Department of Energy. Office of Basic Energy Sciences, and United States. Department of Energy. Office of Scientific and Technical Information
Access Online
- Restrictions on Access
- Free-to-read Unrestricted online access
- Summary
- We present a meta-generalized gradient approximation density functional paired with the VV10 nonlocal correlation functional. The functional form is selected from more than 10 10 choices carved out of a functional space of almost 10 40 possibilities. This raw data comes from training a vast number of candidate functional forms on a comprehensive training set of 1095 data points and testing the resulting fits on a comprehensive primary test set of 1153 data points. Functional forms are ranked based on their ability to reproduce the data in both the training and primary test sets with minimum empiricism, and filtered based on a set of physical constraints and an often-overlooked condition of satisfactory numerical precision with medium-sized integration grids. The resulting optimal functional form has 4 linear exchange parameters, 4 linear same-spin correlation parameters, and 4 linear opposite-spin correlation parameters, for a total of 12 fitted parameters. The final density functional, B97M-V, is further assessed on a secondary test set of 212 data points, applied to several large systems including the coronene dimer and water clusters, tested for the accurate prediction of intramolecular and intermolecular geometries, verified to have a readily attainable basis set limit, and checked for grid sensitivity. Compared to existing density functionals, B97M-V is remarkably accurate for non-bonded interactions and very satisfactory for thermochemical quantities such as atomization energies, but inherits the demonstrable limitations of existing local density functionals for barrier heights.
- Report Numbers
- E 1.99:1407328
- Subject(s)
- Note
- Published through SciTech Connect.
02/20/2015.
"ark:/13030/qt55p9q3bg"
Journal of Chemical Physics 142 7 ISSN 0021-9606 AM
Narbe Mardirossian; Martin Head-Gordon. - Funding Information
- AC02-05CH11231
View MARC record | catkey: 24045243