Actions for Photoluminescence Lifetimes Exceeding 8 μs and Quantum Yields Exceeding 30% in Hybrid Perovskite Thin Films by Ligand Passivation [electronic resource].
Photoluminescence Lifetimes Exceeding 8 μs and Quantum Yields Exceeding 30% in Hybrid Perovskite Thin Films by Ligand Passivation [electronic resource].
Published
Washington, D.C. : United States. Dept. of Energy, 2016. Oak Ridge, Tenn. : Distributed by the Office of Scientific and Technical Information, U.S. Dept. of Energy
We study the effects of a series of post-deposition ligand treatments on the photoluminescence (PL) of polycrystalline methylammonium lead triiodide perovskite thin films. We show that a variety of Lewis bases can improve the bulk PL quantum efficiency (PLQE) and extend the average PL lifetime, <τ>, with large enhancements concentrated at grain boundaries. Notably, we demonstrate thin-film PLQE as high as 35 ± 1% and <τ> as long as 8.82 ± 0.03 μs at solar equivalent carrier densities using tri-n-octylphosphine oxide-treated films. Using glow discharge optical emission spectroscopy and nuclear magnetic resonance spectroscopy, we show that the ligands are incorporated primarily at the film surface and are acting as electron donors. These results indicate it is possible to obtain thin-film PL lifetime and PLQE values that are comparable to those from single crystals by control over surface chemistry.
Published through SciTech Connect. 07/26/2016. "DGE- 1256082" ACS Energy Letters 1 2 ISSN 2380-8195 AM Dane W. deQuilettes; Susanne Koch; Sven Burke; Paranji, Rajan; Alfred J. Shropshire; Mark E. Ziffer; David S. Ginger. Univ. of Washington, Seattle, WA (United States)