Actions for Enhancing uranium uptake by amidoxime adsorbent in seawater [electronic resource] : An investigation for optimum alkaline conditioning parameters
Enhancing uranium uptake by amidoxime adsorbent in seawater [electronic resource] : An investigation for optimum alkaline conditioning parameters
- Published
- Washington, D.C. : United States. Office of the Assistant Secretary for Nuclear Energy, 2015.
Oak Ridge, Tenn. : Distributed by the Office of Scientific and Technical Information, U.S. Dept. of Energy - Physical Description
- pages 4,294-4,302 : digital, PDF file
- Additional Creators
- Oak Ridge National Laboratory, United States. Office of the Assistant Secretary for Nuclear Energy, and United States. Department of Energy. Office of Scientific and Technical Information
Access Online
- Restrictions on Access
- Free-to-read Unrestricted online access
- Summary
- A high-surface-area polyethylene-fiber adsorbent (AF160-2) has been developed at the Oak Ridge National Laboratory by radiation-induced graft polymerization of acrylonitrile and itaconic acid. The grafted nitriles were converted to amidoxime groups by treating with hydroxylamine. The amidoximated adsorbents were then conditioned with potassium hydroxide (KOH) by varying different reaction parameters such as KOH concentration (0.2, 0.44, and 0.6 M), duration (1, 2, and 3 h), and temperature (60, 70, and 80 °C). Adsorbent screening was then performed with simulated seawater solutions containing sodium chloride and sodium bicarbonate, at concentrations found in seawater, and uranium nitrate at a uranium concentration of ~7–8 ppm and pH 8. Fourier transform infrared spectroscopy and solid-state NMR analyses indicated that a fraction of amidoxime groups was hydrolyzed to carboxylate during KOH conditioning. The uranium adsorption capacity in the simulated seawater screening solution gradually increased with conditioning time and temperature for all KOH concentrations. It was also observed that the adsorption capacity increased with an increase in concentration of KOH for all the conditioning times and temperatures. AF160-2 adsorbent samples were also tested with natural seawater using flow-through experiments to determine uranium adsorption capacity with varying KOH conditioning time and temperature. Based on uranium loading capacity values of several AF160-2 samples, it was observed that changing KOH conditioning time from 3 to 1 h at 60, 70, and 80 °C resulted in an increase of the uranium loading capacity in seawater, which did not follow the trend found in laboratory screening with stimulated solutions. Longer KOH conditioning times lead to significantly higher uptake of divalent metal ions, such as calcium and magnesium, which is a result of amidoxime conversion into less selective carboxylate. The scanning electron microscopy showed that long conditioning times may also lead to adsorbent degradation.
- Report Numbers
- E 1.99:1221730
- Subject(s)
- Note
- Published through SciTech Connect.
09/07/2015.
"AF5855000"
"NEAF344"
Industrial and Engineering Chemistry Research 3 5 ISSN 0888-5885 AM
Das, Sadananda [ORNL]; Tsouris, Costas [ORNL]; Zhang, Chenxi [ORNL]; Brown, Suree [ORNL]; Janke, Christopher James [ORNL]; Mayes, Richard; Kuo, Li; Gill, Gary [Pacific Northwest National Laboratory (PNNL)]; Dai, Sheng [ORNL]; Kim, J.; Oyola, Y.; Wood, J. - Funding Information
- AC05-00OR22725
AC05-76RL01830
View MARC record | catkey: 24046245