K <sub>2x</sub> Sn <sub>4-x</sub> S <sub>8-x</sub> (x = 0.65–1) [electronic resource] : a new metal sulfide for rapid and selective removal of Cs <sup>+</sup> , Sr <sup>2+</sup> and UO <sub>2</sub> <sup>2+</sup> ions
- Published
- Washington, D.C. : United States. Office of the Assistant Secretary for Nuclear Energy, 2015.
Oak Ridge, Tenn. : Distributed by the Office of Scientific and Technical Information, U.S. Dept. of Energy - Physical Description
- pages 1,121-1,132 : digital, PDF file
- Additional Creators
- Argonne National Laboratory, United States. Office of the Assistant Secretary for Nuclear Energy, United States. Department of Energy. Office of Basic Energy Sciences, National Science Foundation (U.S.), and United States. Department of Energy. Office of Scientific and Technical Information
Access Online
- Restrictions on Access
- Free-to-read Unrestricted online access
- Summary
- The fission of uranium produces radionuclides, 137Cs and 90Sr, which are major constituents of spent nuclear fuel. The half-life of 137Cs and 90Sr is nearly 30 years and thus that makes them harmful to human life and the environment. The selective removal of these radionuclides in the presence of high salt concentrations from industrial nuclear waste is necessary for safe storage. We report the synthesis and crystal structure of K2xSn4-xS8-x (x = 0.65–1, KTS-3) a material which exhibits excellent Cs+, Sr2+ and UO22+ ion exchange properties in varying conditions. Furthermore, the compound adopts a layered structure which consists of exchangeable potassium ions sandwiched between infinite layers of octahedral and tetrahedral tin centers. K2xSn4-xS8-x (x = 0.65–1, KTS-3) crystallizes in the monoclinic space group P21/c with cell parameters a = 13.092(3) Å, b = 16.882(2) Å, c = 7.375(1) Å and β = 98.10(1)°. Refinement of the single crystal diffraction data revealed the presence of Sn vacancies in the tetrahedra that are long range ordered. The interlayer potassium ions of KTS-3 can be exchanged for Cs+, Sr2+ and UO22+. KTS-3 exhibits rapid and efficient ion exchange behavior in a broad pH range. The distribution coefficients (Kd) for KTS-3 are high for Cs+ (5.5 × 104), Sr2+ (3.9 × 105) and UO22+ (2.7 × 104) at neutral pH (7.4, 6.9, 5.7 ppm Cs+, Sr2+ and UO22+, respectively; V/m ~ 1000 mL g-1). KTS-3 exhibits impressive Cs+, Sr2+ and UO22+ ion exchange properties in high salt concentration and over a broad pH range, which coupled with the low cost, environmentally friendly nature and facile synthesis underscores its potential in treating nuclear waste.
- Report Numbers
- E 1.99:1352636
- Subject(s)
- Note
- Published through SciTech Connect.
10/27/2015.
"127295"
Chemical Science 7 2 ISSN 2041-6520; CSHCBM AM
Debajit Sarma; Christos D. Malliakas; K. S. Subrahmanyam; Saiful M. Islam; Mercouri G. Kanatzidis. - Funding Information
- AC02-06CH11357
DMR-1410169
View MARC record | catkey: 24046887