Buffer architecture for biaxially textured structures and method of fabricating same [electronic resource].
- Published
- Washington, D.C. : United States. Dept. of Energy, 2004.
Oak Ridge, Tenn. : Distributed by the Office of Scientific and Technical Information, U.S. Dept. of Energy - Additional Creators
- Oak Ridge National Laboratory, United States. Department of Energy, and United States. Department of Energy. Office of Scientific and Technical Information
Access Online
- Restrictions on Access
- Free-to-read Unrestricted online access
- Summary
- The invention relates to an article with an improved buffer layer architecture comprising a substrate having a metal surface, and an epitaxial buffer layer on the surface of the substrate. The epitaxial buffer layer comprises at least one of the group consisting of ZrO.sub.2, HfO.sub.2, and compounds having at least one of Ca and a rare earth element stabilizing cubic phases of ZrO.sub.2 and/or HfO.sub.2. The article can also include a superconducting layer deposited on the epitaxial buffer layer. The article can also include an epitaxial capping layer between the epitaxial buffer layer and the superconducting layer. A method for preparing an epitaxial article comprises providing a substrate with a metal surface, depositing on the metal surface an epitaxial buffer layer comprising at least one material selected from the group consisting of ZrO.sub.2, HfO.sub.2, and compounds having at least one of Ca and a rare earth element stabilizing cubic phases of at least one of ZrO.sub.2 and HfO.sub.2. The epitaxial layer depositing step occurs in a vacuum with a background pressure of no more than 1.times.10.sup.-5 Torr. The method can further comprise depositing a superconducting layer on the epitaxial layer, and depositing an epitaxial capping layer between the epitaxial buffer layer and the superconducting layer.
- Report Numbers
- E 1.99:6,716,795
6,716,795 - Subject(s)
- Note
- Published through SciTech Connect.
04/06/2004.
"6,716,795"
"09/406,190"
Norton, David; Park, Chan; Goyal, Amit. - Funding Information
- AC05-96OR22464
View MARC record | catkey: 24505084