Actions for Polarized light and optical systems
Polarized light and optical systems / Russell A. Chipman, Wai Sze Tiffany Lam, Garam Young
- Author
- Chipman, Russell A.
- Published
- Boca Raton, FL : CRC Press, 2019.
- Physical Description
- 1 online resource (982 pages : 600 illustrations).
- Additional Creators
- Lam, Wai Sze Tiffany and Young, Garam
Access Online
- Series
- Contents
- Machine generated contents note: 1.1.Polarized Light -- 1.2.Polarization States and the Poincare Sphere -- 1.3.Polarization Elements and Polarization Properties -- 1.4.Polarimetry and Ellipsometry -- 1.5.Anisotropic Materials -- 1.6.Typical Polarization Problems in Optical Systems -- 1.6.1.Angle Dependence of Polarizers -- 1.6.2.Wavelength and Angle Dependence of Retarders -- 1.6.3.Stress Birefringence in Lenses -- 1.6.4.Liquid Crystal Displays and Projectors -- 1.7.Optical Design -- 1.7.1.Polarization Ray Tracing -- 1.7.2.Polarization Aberrations of Lenses -- 1.7.3.High Numerical Aperture Wavefronts -- 1.8.Comment on Historical Treatments -- 1.9.Reference Books on Polarized Light -- 1.10.Problem Sets -- References -- 2.1.The Description of Polarized Light -- 2.2.The Polarization Vector -- 2.3.Properties of the Polarization Vector -- 2.4.Propagation in Isotropic Media -- 2.5.Magnetic Field, Flux, and Polarized Flux -- 2.6.Jones Vectors -- 2.7.Evolution of Overall Phase -- 2.8.Rotation of Jones Vectors -- 2.9.Linearly Polarized Light -- 2.10.Circularly Polarized Light -- 2.11.Elliptically Polarized Light -- 2.12.Orthogonal Jones Vectors -- 2.13.Change of Basis -- 2.14.Addition of Jones Vectors -- 2.15.Polarized Flux Components -- 2.16.Converting Polarization Vectors into Jones Vectors -- 2.17.Decreasing Phase Sign Convention -- 2.18.Increasing Phase Sign Convention -- 2.19.Polarization State of Sources -- 2.20.Problem Sets -- References -- 3.1.The Description of Polychromatic Light -- 3.2.Phenomenological Definition of the Stokes Parameters -- 3.3.Unpolarized Light -- 3.4.Partially Polarized Light and the Degree of Polarization -- 3.5.Spectral Bandwidth -- 3.6.Rotation of the Polarization Ellipse -- 3.7.Linearly Polarized Stokes Parameters -- 3.8.Elliptical Polarization Parameters -- 3.9.Orthogonal Polarization States -- 3.10.Stokes Parameter and Jones Vector Sign Conventions -- 3.11.Polarized Fluxes and Conversions between Stokes Parameters and Jones Vectors -- 3.12.The Stokes Parameters' Non-Orthogonal Coordinate System -- 3.13.The Poincare Sphere -- 3.14.Flat Mappings of the Poincare Sphere -- 3.15.Summary and Conclusion -- 3.16.Problem Sets -- References -- 4.1.Introduction -- 4.2.Combining Light Waves -- 4.3.Interferometers -- 4.4.Interference of Nearly Parallel Monochromatic Plane Waves -- 4.5.Interference of Plane Waves at Large Angles -- 4.6.Polarization Considerations in Holography -- 4.7.The Addition of Polarized Beams -- 4.7.1.Addition of Polarized Light of Two Different Frequencies -- 4.7.2.Addition of Polychromatic Beams -- 4.7.3.A Gaussian Wave Packet Example -- 4.8.Conclusion -- 4.9.Problem Sets -- References -- 5.1.Introduction -- 5.2.Dichroic and Birefringent Materials -- 5.3.Diattenuation and Retardance -- 5.3.1.Diattenuation -- 5.3.2.Retardance -- 5.4.Jones Matrices -- 5.4.1.Eigenpolarizations -- 5.4.2.Jones Matrix Notation -- 5.4.3.Rotation of Jones Matrices -- 5.5.Polarizer and Diattenuator Jones Matrices -- 5.5.1.Polarizer Jones Matrices -- 5.5.2.Linear Diattenuator Jones Matrices -- 5.6.Retarder Jones Matrices -- 5.6.1.Linear Retarder Jones Matrices -- 5.6.2.Circular Retarder Jones Matrices -- 5.6.3.Vortex Retarders -- 5.7.General Diattenuators and Retarders -- 5.7.1.Linear Diattenuators -- 5.7.2.Elliptical Diattenuators -- 5.7.3.Elliptical Retarders -- 5.8.Non-Polarizing Jones Matrices for Amplitude and Phase Change -- 5.9.Matrix Properties of Jones Matrices -- 5.9.1.Hermitian Matrices: Diattenuation -- 5.9.2.Unitary Matrices and Unitary Transformations: Retarder -- 5.9.3.Polar Decomposition: Separating Retardance from Diattenuation -- 5.10.Increasing Phase Sign Convention -- 5.11.Conclusion -- 5.12.Problem Sets -- References -- 6.1.Introduction -- 6.2.The Mueller Matrix -- 6.3.Sequences of Polarization Elements -- 6.4.Non-Polarizing Mueller Matrices -- 6.5.Rotating Polarization Elements about the Light Direction -- 6.6.Retarder Mueller Matrices -- 6.7.Polarizer and Diattenuator Mueller Matrices -- 6.7.1.Basic Polarizers -- 6.7.2.Transmittance and Diattenuation -- 6.7.3.Polarizance -- 6.7.4.Diattenuators -- 6.8.Poincare Sphere Operations -- 6.8.1.The Operation of Retarders on the Poincare Sphere -- 6.8.2.The Operation of a Rotating Linear Retarder -- 6.8.3.The Operation of Polarizers and Diattenuators -- 6.8.4.Indicating Polarization Properties -- 6.9.Weak Polarization Elements -- 6.10.Non-Depolarizing Mueller Matrices -- 6.11.Depolarization -- 6.11.1.The Depolarization Index and the Average Degree of Polarization -- 6.11.2.Degree of Polarization Surfaces and Maps -- 6.11.3.Testing for Physically Realizable Mueller Matrices -- 6.11.4.Weak Depolarizing Elements -- 6.11.5.The Addition of Mueller Matrices -- 6.12.Relating Jones and Mueller Matrices -- 6.12.1.Transforming Jones Matrices into Mueller Matrices Using Tensor Product -- 6.12.2.Conversion of Jones Matrices to Mueller Matrices Using Pauli Matrices -- 6.12.3.Transforming Mueller Matrices into Jones Matrices -- 6.13.Ray Tracing with Mueller Matrices -- 6.13.1.Mueller Matrices for Refraction -- 6.13.2.Mueller Matrices for Reflection -- 6.14.The Origins of the Mueller Matrix -- 6.15.Problem Sets -- References -- 7.1.Introduction -- 7.2.What Does the Polarimeter See? -- 7.3.Polarimeters -- 7.3.1.Light-Measuring Polarimeters -- 7.3.2.Sample-Measuring Polarimeters -- 7.3.3.Complete and Incomplete Polarimeters -- 7.3.4.Polarization Generators and Analyzers -- 7.4.Mathematics of Polarimetric Measurement and Data Reduction -- 7.4.1.Stokes Polarimetry -- 7.4.2.Measuring Mueller Matrix Elements -- 7.4.3.Mueller Data Reduction Matrix -- 7.4.4.Null Space and the Pseudoinverse -- 7.5.Classes of Polarimeters -- 7.5.1.Time-Sequential Polarimeters -- 7.5.2.Modulated Polarimeters -- 7.5.3.Division of Amplitude -- 7.5.4.Division of Aperture -- 7.5.5.Imaging Polarimeters -- 7.6.Stokes Polarimeter Configurations -- 7.6.1.Simultaneous Polarimetric Measurement -- 7.6.1.1.Division-of-Aperture Polarimetry -- 7.6.1.2.Division-of-Focal-Plane Polarimetry -- 7.6.1.3.Division-of-Amplitude Polarimetry -- 7.6.2.Rotating Element Polarimetry -- 7.6.2.1.Rotating Analyzer Polarimeters -- 7.6.2.2.Rotating Analyzer Plus Fixed Analyzer Polarimeter -- 7.6.2.3.Rotating Retarder and Fixed Analyzer Polarimeters -- 7.6.3.Variable Retarder and Fixed Polarizer Polarimeter -- 7.6.4.Photoelastic Modulator Polarimeters -- 7.6.5.The MSPI and MAIA Imaging Polarimeters -- 7.6.6.Example Atmospheric Polarization Images -- 7.7.Sample-Measuring Polarimeters -- 7.7.1.Polariscopes -- 7.7.1.1.Linear Polariscope -- 7.7.1.2.Circular Polariscope -- 7.7.1.3.Interference Colors -- 7.7.1.4.Polariscope with Tint Plate -- 7.7.1.5.Conoscope -- 7.7.2.Mueller Polarimetry Configurations -- 7.7.2.1.Dual Rotating Retarder Polarimeter -- 7.7.2.2.Polarimetry Near Retroreflection -- 7.8.Interpreting Mueller Matrix Images -- 7.9.Calibrating Polarimeters -- 7.10.Artifacts in Polarimetric Images -- 7.10.1.Pixel Misalignment -- 7.11.Optimizing Polarimeters -- 7.12.Problem Sets -- Acknowledgments -- References -- 8.1.Introduction -- 8.2.Propagation of Light -- 8.2.1.Plane Waves and Rays -- 8.2.2.Plane of Incidence -- 8.2.3.Homogeneous and Isotropic Interfaces -- 8.2.4.Light Propagation in Media -- 8.3.Fresnel Equations -- 8.3.1.s-and p-Polarization Components -- 8.3.2.Amplitude Coefficients -- 8.3.3.The Fresnel Equations -- 8.3.4.Intensity Coefficients -- 8.3.5.Normal Incidence -- 8.3.6.Brewster's Angle -- 8.3.7.Critical Angle -- 8.3.8.Intensity and Phase Change with Incident Angle -- 8.3.9.Jones Matrices with Fresnel Coefficients -- 8.4.Fresnel Refraction and Reflection -- 8.4.1.Dielectric Refraction -- 8.4.2.External Reflection -- 8.4.3.Internal Reflection -- 8.4.4.Metal Reflection -- 8.4.4.1.Normal Incidence Reflectance -- 8.4.4.2.Retardance and Diattenuation of Metal at Non-Normal Incidence -- 8.5.Approximate Representations of Fresnel Coefficients -- 8.5.1.Taylor Series for the Fresnel Coefficients -- 8.6.Conclusion -- 8.7.Problem Sets -- References -- 9.1.Definition of Polarization Ray Tracing Matrix, P -- 9.2.Formalism of Polarization Ray Tracing Matrix Using Orthogonal Transformation -- 9.3.Retarder Polarization Ray Tracing Matrix Examples -- 9.4.Diattenuation Calculation Using Singular Value Decomposition -- 9.5.Example-Interferometer with a Polarizing Beam Splitter -- 9.5.1.Ray Tracing the Reference Path -- 9.5.2.Ray Tracing through the Test Path -- 9.5.3.Ray Tracing through the Analyzer -- 9.5.4.Cumulative P Matrix for Both Paths -- 9.6.The Addition Form of Polarization Ray Tracing Matrices -- 9.6.1.Combining P Matrices for the Interferometer Example -- 9.7.Example-A Hollow Corner Cube -- 9.8.Conclusion -- 9.9.Problem Sets -- References -- 10.1.Introduction -- 10.2.Goals for Ray Tracing -- 10.3.Specification of Optical Systems -- 10.3.1.Surface Equations -- 10.3.2.Apertures -- 10.3.3.Optical Interfaces -- 10.3.4.Dummy Surfaces -- 10.4.Specifications of Light Beams -- 10.5.System Descriptions -- 10.5.1.Object Plane -- 10.5.2.Aperture Stop -- 10.5.3.Entrance and Exit Pupils -- 10.5.4.Importance of the Exit Pupil -- 10.5.5.Marginal and Chief Rays -- 10.5.6.Numerical Aperture and Lagrange Invariant -- 10.5.7.Etendue -- 10.5.8.Polarized Light -- 10.6.Ray Tracing -- 10.6.1.Ray Intercept -- 10.6.2.Multiplicity of Ray Intercepts with a Surface -- 10.6.3.Optical Path Length -- 10.6.4.Reflection and Refraction -- 10.6.5.Polarization Ray Tracing -- 10.6.6.s-and p-Components -- 10.6.7.Amplitude Coefficients and Interface Jones Matrix -- 10.6.8.Polarization Ray Tracing Matrix -- 10.7.Wavefront Analysis -- 10.7.1.Normalized Coordinates -- 10.7.2.Wavefront Aberration Function -- 10.7.3.Polarization Aberration Function -- 10.7.4.Evaluation of the Aberration Function -- 10.7.5.Seidel Wavefront Aberration Expansion -- 10.7.6.Zernike Polynomials -- 10.7.7.Wavefront Quality -- 10.7.8.Polarization Quality -- 10.8.Non-Sequential Ray Trace -- 10.9.Coherent and Incoherent Ray Tracing --, Contents note continued: 10.9.1.Polarization Ray Tracing with Mueller Matrices -- 10.10.The Use of Polarization Ray Tracing -- 10.11.Brief History of Polarization Ray Tracing -- 10.12.Summary and Conclusion -- 10.13.Problem Sets -- 10.14.Appendix: Cell Phone Lens Prescription -- References -- 11.1.Introduction: Local Coordinates for Entrance and Exit Pupils -- 11.2.Local Coordinates -- 11.3.Dipole Coordinates -- 11.4.Double Pole Coordinates -- 11.5.High Numerical Aperture Wavefronts -- 11.6.Converting P Pupils to Jones Pupils -- 11.7.Example: Cell Phone Lens Aberrations -- 11.8.Wavefront Aberration Function Difference between Dipole and Double Pole Coordinates -- 11.9.Conclusion -- 11.10.Problem Sets -- References -- 12.1.Introduction -- 12.2.Uncoated Single-Element Lens -- 12.3.Fold Mirror -- 12.4.Combination of Fold Mirror Systems -- 12.5.Cassegrain Telescope -- 12.6.Fresnel Rhomb -- 12.7.Conclusion -- 12.8.Problem Sets -- References -- 13.1.Introduction -- 13.2.Single-Layer Thin Films -- 13.2.1.Antireflection Coatings -- 13.2.2.Ideal Single-Layer Antireflection Coating -- 13.2.3.Metal Beam Splitters -- 13.3.Multilayer Thin Films -- 13.3.1.Algorithms -- 13.3.2.Quarter and Half Wave Films -- 13.3.3.Reflection-Enhancing Coatings -- 13.3.4.Polarizing Beam Splitters -- 13.4.Contributions to Wavefront Aberrations -- 13.5.Phase Discontinuities -- 13.6.Conclusion -- 13.7.Appendix: Derivation of Single-Layer Equations -- 13.8.Problem Sets -- References -- 14.1.Introduction -- 14.2.Pauli Matrices and Jones Matrices -- 14.2.1.Pauli Matrix Identities -- 14.2.2.Expansion in a Sum of Pauli Matrices -- 14.2.3.Pauli Sign Convention -- 14.2.4.Pauli Coefficients of a Polarization Element Rotated about the Optical Axis -- 14.2.5.Eigenvalues and Eigenvectors and Matrix Functions for the Pauli Sum Form -- 14.2.6.Canonical Summation Form -- 14.3.Sequences of Polarization Elements -- 14.4.Exponentiation and Logarithms of Matrices -- 14.4.1.Exponentiation of Matrices -- 14.4.2.Logarithms of Matrices -- 14.4.3.Retarder Matrices -- 14.4.4.Diattenuator Matrices -- 14.4.5.Polarization Properties of Homogeneous Jones Matrices -- 14.5.Elliptical Retarders and the Retarder Space -- 14.6.Polarization Properties of Inhomogeneous Jones Matrices -- 14.7.Diattenuation Space and Inhomogeneous Polarization Elements -- 14.7.1.Superposing the Diattenuation and Retardance Spaces -- 14.8.Weak Polarization Elements -- 14.9.Summary and Conclusion -- 14.10.Problem Sets -- References -- 15.1.Introduction -- 15.2.Polarization Aberrations -- 15.2.1.Interaction of Weakly Polarizing Jones Matrices -- 15.2.2.Polarization of a Sequence of Weakly Polarizing Ray Intercepts -- 15.3.Paraxial Polarization Aberrations -- 15.3.1.Paraxial Angle and Plane of Incidence -- 15.3.2.Paraxial Diattenuation and Retardance -- 15.3.3.Diattenuation Defocus -- 15.3.4.Diattenuation Defocus and Retardance Defocus -- 15.3.5.Diattenuation and Retardance across the Field of View -- 15.3.6.Polarization Tilt and Piston -- 15.3.7.Binodal Polarization -- 15.3.8.Summation of Paraxial Polarization Aberrations over Surfaces -- 15.4.Paraxial Polarization Analysis of a Seven-Element Lens System -- 15.5.Higher-Order Polarization Aberrations -- 15.5.1.Electric Field Aberrations -- 15.5.2.Orientors -- 15.5.3.Diattenuation and Retardance -- 15.6.Polarization Aberration Measurements -- 15.7.Summary and Conclusion -- 15.8.Appendix -- 15.8.1.Paraxial Optics -- 15.8.2.Setting Up the Optical System -- 15.8.3.The Paraxial Ray Trace -- 15.8.4.Reduced Thicknesses and Angles -- 15.8.5.Paraxial Skew Rays -- 15.7.Problem Sets -- References -- 16.1.Introduction -- 16.2.Discrete Fourier Transformation -- 16.3.Jones Exit Pupil and Jones Pupil Function -- 16.4.Amplitude Response Matrix (ARM) -- 16.5.Mueller Point Spread Matrix (MPSM) -- 16.6.The Scale of the ARM and MPSM -- 16.7.Polarization Structure of Images -- 16.8.Optical Transfer Matrix (OTM) -- 16.9.Example-Polarized Pupil with Unpolarized Object -- 16.10.Example-Solid Corner Cube Retroreflector -- 16.11.Example-Critical Angle Corner Cube Retroreflector -- 16.12.Discussion and Conclusion -- 16.13.Problem Sets -- References -- 17.1.Introduction -- 17.1.1.Purpose of the Proper Retardance Calculation -- 17.2.Geometrical Transformations -- 17.2.1.Rotation of Local Coordinates: Polarimeter Viewpoint -- 17.2.2.Non-Polarizing Optical Systems -- 17.2.3.Parallel Transport of Vectors -- 17.2.4.Parallel Transport of Vectors with Reflection -- 17.2.5.Parallel Transport Matrix, Q -- 17.3.Canonical Local Coordinates -- 17.4.Proper Retardance Calculations -- 17.4.1.Definition of the Proper Retardance -- 17.5.Separating Geometric Transformations from P -- 17.5.1.The Proper Retardance Algorithm for P, Method 1 -- 17.5.2.The Proper Retardance Algorithm for P, Method 2 -- 17.5.3.Retardance Range -- 17.6.Examples -- 17.6.1.Ideal Reflection at Normal Incidence -- 17.6.2.An Aluminum-Coated Three-Fold Mirror System Example -- 17.7.Conclusion -- 17.8.Problem Sets -- References -- 18.1.Introduction -- 18.2.Definition of Skew Aberration -- 18.3.Skew Aberration Algorithm -- 18.4.Lens Example-U.S. Patent 2,896,506 -- 18.5.Skew Aberration in Paraxial Ray Trace -- 18.6.Example of Paraxial Skew Aberration -- 18.7.Skew Aberration's Effect on PSF -- 18.8.PSM for U.S. Patent 2,896,506 -- 18.9.Statistics-CODE V Patent Library -- 18.10.Conclusion -- 18.11.Problem Sets -- References -- 19.1.Ray Tracing in Birefringent Materials -- 19.2.Description of Electromagnetic Waves in Anisotropic Media -- 19.3.Defining Birefringent Materials -- 19.4.Eigenmodes of Birefringent Materials -- 19.5.Reflections and Refractions at Birefringent Interface -- 19.6.Data Structure for Ray Doubling -- 19.7.Polarization Ray Tracing Matrices for Birefringent Interfaces -- 19.7.1.Case I: Isotropic-to-Isotropic Intercept -- 19.7.2.Case II: Isotropic-to-Birefringent Interface -- 19.7.3.Case III: Birefringent-to-Isotropic Interface -- 19.7.4.Case IV: Birefringent-to-Birefringent Interface -- 19.8.Example: Ray Splitting through Three Biaxial Crystal Blocks -- 19.9.Example: Reflections Inside a Biaxial Cube -- 19.10.Conclusion -- 19.11.Problem Sets -- References -- 20.1.Introduction -- 20.2.Wavefronts and Ray Grids -- 20.3.Co-Propagating Wavefront Combination -- 20.4.Non-Co-Propagating Wavefront Combination -- 20.5.Combining Irregular Ray Grids -- 20.5.1.General Steps to Combine Misaligned Ray Data -- 20.5.2.Inverse-Distance Weighted Interpolation -- 20.6.Conclusion -- 20.7.Problem Sets -- References -- 21.1.Optical Design Issues in Uniaxial Materials -- 21.2.Descriptions of Uniaxial Materials -- 21.3.Eigenmodes of Uniaxial Materials -- 21.4.Reflections and Refractions at a Uniaxial Interface -- 21.5.Index Ellipsoid, Optical Indicatrix, and K-and S-Surfaces -- 21.6.Aberrations of Crystal Waveplates -- 21.6.1.A-Plate Aberrations -- 21.6.2.C-Plate Aberrations -- 21.7.Image Formation through an A-Plate -- 21.8.Walk-Off Plate -- 21.9.Crystal Prisms -- 21.10.Problem Sets -- References -- 22.1.Introduction to Crystal Polarizers -- 22.2.Materials for Crystal Polarizers -- 22.3.Glan-Taylor Polarizer -- 22.3.1.Limited FOV -- 22.3.2.Multiple Potential Ray Paths -- 22.3.3.Multiple Polarized Wavefronts -- 22.3.4.Polarized Wavefronts Exiting from the Polarizer -- 22.4.Aberrations of the Glan-Taylor Polarizer -- 22.5.Pairs of Glan-Taylor Polarizers -- 22.6.Conclusion -- 22.7.Problem Sets -- References -- 23.1.Introduction -- 23.2.The Grating Equation -- 23.3.Ray Tracing DOES -- 23.3.1.Reflection Diffractive Gratings -- 23.3.2.Wire Grid Polarizers -- 23.3.3.Diffractive Retarders -- 23.3.4.Diffractive Subwavelength Antireflection Coatings -- 23.4.Summary of the RCWA Algorithm -- 23.5.Problem Sets -- Acknowledgments -- References -- 24.1.Introduction -- 24.2.Liquid Crystals -- 24.2.1.Dielectric Anisotropy -- 24.3.Liquid Crystal Cells -- 24.3.1.Construction of Liquid Crystal Cells -- 24.3.2.Restoring Forces -- 24.3.3.Liquid Crystal Display: High Contrast Ratio Intensity Modulation -- 24.4.Configurations of Liquid Crystal Cells -- 24.4.1.The Freedericksz Cell -- 24.4.2.90° Twisted Nematic Cell -- 24.4.3.Super Twisted Nematic Cell -- 24.4.4.Vertically Aligned Nematic Cell -- 24.4.5.In-Plane Switching Cell -- 24.4.6.Liquid Crystal on Silicon Cells -- 24.4.7.Blue Phase LC Cells -- 24.5.Polarization Models -- 24.5.1.Extended Jones Matrix Model -- 24.5.2.Single Pass with Polarization Ray Tracing Matrices -- 24.5.3.Multilayer Interference Models -- 24.5.4.Calculation for Liquid Crystal Cell ZLI-1646 -- 24.6.Issues in the Construction of LC Cells -- 24.6.1.Spacers -- 24.6.2.Disclinations -- 24.6.3.Pretilt -- 24.6.4.Oscillating Square Wave Voltage -- 24.7.Limitations on LC Cell Performance -- 24.7.1.LC Cell Speed -- 24.7.2.Spectral Variation of Exiting Polarization State -- 24.7.3.Variation of Retardance with Angle of Incidence -- 24.7.4.Compensating LC Cells' Polarization Aberrations with Biaxial Films -- 24.7.5.Polarizer Leakage -- 24.7.6.Depolarization -- 24.8.Testing Liquid Crystal Cells -- 24.8.1.Twisted Nematic Cell Example -- 24.8.2.IPS Tests -- 24.8.3.VAN Cell -- 24.8.4.MVA Cell Test -- 24.8.5.Sheet Retarder Defect -- 24.8.6.Misalignment between Analyzer and Exiting Polarization State -- 24.9.Problem Sets -- Acknowledgment -- References -- 25.1.Introduction to Stress Birefringence -- 25.2.Stress Birefringence in Optical Systems -- 25.3.Theory of Stress-Induced Birefringence -- 25.4.Ray Tracing in Stress Birefringent Components -- 25.5.Ray Tracing through Stress Birefringence Components with Spatially Varying Stress -- 25.5.1.Storage of System Shape -- 25.5.2.Refraction and Reflections -- 25.5.3.Stress Data Format -- 25.5.4.Polarization Ray Tracing Matrix for Spatially Varying Biaxial Stress -- 25.5.5.Examples of Spatially Varying Stress Function -- 25.6.Effects of Stress Birefringence on Optical System Performance -- 25.6.1.Observing Stress Birefringence Using Polariscope -- 25.6.2.Simulations of Injection-Molded Lens --, and Contents note continued: 25.6.3.Simulation of a Plastic DVD Lens -- 25.7.Conclusion -- 25.8.Problem Sets -- Acknowledgments -- References -- 26.1.Introduction -- 26.2.Mystery of Retardance Discontinuity -- 26.3.Retardance Unwrapping for Homogeneous Retarder Systems Using a Simple Dispersion Model -- 26.3.1.Dispersion Model -- 26.3.2.Retardance of the Homogeneous Retarder System -- 26.3.3.Homogeneous Retarder's Trajectory and Retardance Unwrapping in Retarder Space -- 26.4.Discontinuities in Unwrapped Retardance Values for Compound Retarder Systems with Arbitrary Alignment -- 26.4.1.Compound Retarder Jones Matrix Decomposition -- 26.4.2.Compound Retarder's Trajectory in Retarder Space -- 26.4.3.Multiple Modes Exit the Compound Retarder System -- 26.4.4.Compound Retarder Example at 45° -- 26.5.Conclusion -- 26.6.Appendix -- 26.7.Problem Sets -- References -- 27.1.Difficult Issues -- 27.2.Polarization Ray Tracing Complications -- 27.2.1.Optical System Description Complications -- 27.2.2.Elliptical Polarization Properties of Ray Paths -- 27.2.3.Optical Path Length and Phase -- 27.2.4.Definition of Retardance -- 27.2.5.Retardance and Skew Aberration -- 27.2.6.Multi-Order Retardance -- 27.2.7.Birefringent Ray Tracing Complications -- 27.2.8.Coherence Simulation -- 27.2.9.Scattering -- 27.2.10.Depolarization -- 27.3.Polarization Ray Tracing Concepts and Methods -- 27.3.1.Jones Matrices and Jones Pupil -- 27.3.2.P Matrix and Local Coordinates -- 27.3.3.Generalization of PSF and OTF -- 27.3.4.Ray Doubling, Ray Trees, and Data Structures -- 27.3.5.Mode Combination -- 27.3.6.Alternative Simulation Methods -- 27.4.Polarization Aberration Mitigation -- 27.4.1.Analyzing Polarization Ray Tracing Output -- 27.5.Comparison of Polarization Ray Tracing and Polarization Aberrations -- 27.5.1.Aluminum Coating and Polarization Aberration Expression -- 27.5.2.Polarization Ray Trace and the Jones Pupil -- 27.5.3.Aberration Expression for the Jones Pupil -- 27.5.4.Diattenuation and Retardance Contributions -- 27.5.5.Design Rules Based on Polarization Aberrations -- 27.5.5.1.Diattenuation at the Center of the Pupil -- 27.5.5.2.Retardance at the Center of the Pupil -- 27.5.5.3.Linear Variation of Diattenuation -- 27.5.5.4.Linear Variation of Retardance, the PSF Shear between the XX-and YY-Components -- 27.5.5.5.The Polarization-Dependent Astigmatism -- 27.5.5.6.The Fraction of Light in the Ghost PSF in XY-and YX-Components -- 27.5.6.Amplitude Response Matrix -- 27.5.7.Mueller Matrix Point Spread Matrices -- 27.5.8.Location of the PSF Image Components -- References.
- Summary
- Polarized Light and Optical Systems presents polarization optics for undergraduate and graduate students in a way which makes classroom teaching relevant to current issues in optical engineering. This curriculum has been developed and refined for a decade and a half at the University of Arizona's College of Optical Sciences. Polarized Light and Optical Systems provides a reference for the optical engineer and optical designer in issues related to building polarimeters, designing displays, and polarization critical optical systems. The central theme of Polarized Light and Optical Systems is a unifying treatment of polarization elements as optical elements and optical elements as polarization elements.
- Subject(s)
- ISBN
- 9781351129077 (electronic bk.)
1351129074 (electronic bk.) - Source of Acquisition
- Purchased with funds from the Paterno Libraries Endowment; 2018
- Endowment Note
- Paterno Libraries Endowment
View MARC record | catkey: 24779795