The Geometry of Spherically Symmetric Finsler Manifolds [electronic resource] / by Enli Guo, Xiaohuan Mo.
- Author
- Guo, Enli
- Published
- Singapore : Springer Singapore : Imprint: Springer, 2018.
- Physical Description
- XIII, 154 p. 6 illus. online resource
- Additional Creators
- Mo, Xiaohuan and SpringerLink (Online service)
Access Online
- Series
- Restrictions on Access
- License restrictions may limit access.
- Contents
- Chapter 1. Spherically Symmetric Finsler Metrics -- Chapter 2. Dually Flat Spherically Symmetric Metrics -- Chapter 3. Spherically Symmetric Metrics of Isotropic Berwald Curvature -- Chapter 4. Spherically Symmetric Douglas Metrics -- Chapter 5. Projectively Flat Spherically Symmetric Metrics -- Chapter 6. Spherically Symmetric Metrics of Scalar Curvature -- Chapter 7. Spherically Symmetric Metrics of Constant Flag Curvature -- Chapter 8. Spherically Symmetric W-quadratic Metrics. .
- Summary
- This book presents properties, examples, rigidity theorems and classification results of such Finsler metrics. In particular, this book introduces how to investigate spherically symmetric Finsler geometry using ODE or PDE methods. Spherically symmetric Finsler geometry is a subject that concerns domains in R^n with spherically symmetric metrics. Recently, a significant progress has been made in studying Riemannian-Finsler geometry. However, constructing nice examples of Finsler metrics turn out to be very difficult. In spherically symmetric Finsler geometry, we find many nice examples with special curvature properties using PDE technique. The studying of spherically symmetric geometry shows closed relation among geometry, group and equation.
- Subject(s)
- Genre(s)
- ISBN
- 9789811315985
9789811315978 (print)
9789811315992 (print) - Digital File Characteristics
- text file PDF
- Part Of
- Springer eBooks
View MARC record | catkey: 26086017