Power systems electromagnetic transients simulation / Neville Watson and Jos Arrillaga
- Author:
- Watson, N. R.
- Published:
- London : Institution of Engineering and Technology, 2018.
- Copyright Date:
- ©2019
- Edition:
- 2nd edition.
- Physical Description:
- xxxii, 493 pages : illustrations ; 24 cm.
- Additional Creators:
- Arrillaga, J.
- Series:
- Contents:
- Machine generated contents note: 1.Definitions objectives and background -- 1.1.Introduction -- 1.2.Classification of electromagnetic transients -- 1.3.Transient simulators -- 1.4.Digital simulation -- 1.4.1.State variable analysis -- 1.4.2.Method of difference equations -- 1.5.Historical perspective -- 1.6.Range of applications -- References -- 2.Analysis of continuous and discrete systems -- 2.1.Introduction -- 2.2.Continuous systems -- 2.2.1.State variable formulations -- 2.2.2.Time-domain solution of state equations -- 2.2.3.Digital simulation of continuous systems -- 2.3.Discrete systems -- 2.4.Relationship of continuous and discrete domains -- 2.5.Summary -- References -- 3.State variable analysis -- 3.1.Introduction -- 3.2.Choice of state variables -- 3.3.Formation of the state equations -- 3.3.1.The transform method -- 3.3.2.The graph method -- 3.4.Solution procedure -- 3.5.Transient converter simulation -- 3.5.1.Per unit system -- 3.5.2.Network equations -- 3.5.3.Structure of TCS -- 3.5.4.Valve switchings -- 3.5.5.Effect of automatic time-step adjustments -- 3.5.6.TCS converter control -- 3.6.Example -- 3.7.Summary -- References -- 4.Numerical integrator substitution -- 4.1.Introduction -- 4.2.Discretisation of R, L, C elements -- 4.2.1.Resistance -- 4.2.2.Inductance -- 4.2.3.Capacitance -- 4.2.4.Components reduction -- 4.3.Dual Norton model of the transmission line -- 4.4.Network solution -- 4.4.1.Example: conversion of voltage sources to current sources -- 4.4.2.Network solution with switches -- 4.4.3.Example: voltage step applied to RL load -- 4.5.Non-linear or time varying parameters -- 4.5.1.Current-source representation -- 4.5.2.Compensation method -- 4.5.3.Piecewise linear method -- 4.6.Subsystems -- 4.7.Sparsity and optimal ordering -- 4.8.Numerical errors and instabilities -- 4.9.Summary -- References -- 5.The root-matching method -- 5.1.Introduction -- 5.2.Exponential form of the difference equation -- 5.3.z-Domain representation of difference equations -- 5.4.Implementation in EMTP algorithm -- 5.5.Family of exponential forms of the difference equation -- 5.5.1.Step response -- 5.5.2.Steady-state response -- 5.5.3.Frequency response -- 5.6.Example -- 5.7.Summary -- References -- 6.Transmission lines and cables -- 6.1.Introduction -- 6.2.Bergeron's model -- 6.2.1.Multi-conductor transmission lines -- 6.3.Frequency-dependent transmission lines -- 6.3.1.Frequency to time-domain transformation -- 6.3.2.Phase domain model -- 6.4.Overhead transmission line parameters -- 6.4.1.Bundled sub-conductors -- 6.4.2.Earth wires -- 6.5.Underground cable parameters -- 6.6.Example -- 6.7.Summary -- References -- 7.Transformers and rotating plant -- 7.1.Introduction -- 7.2.Basic transformer model -- 7.2.1.Numerical implementation -- 7.2.2.Parameters derivation -- 7.2.3.Modelling of non-linearities -- 7.3.Advanced transformer models -- 7.3.1.Single-phase UMEC model -- 7.3.2.UMEC implementation in PSCAD/EMTDC -- 7.3.3.Three-limb three-phase UMEC -- 7.3.4.Fast transient models -- 7.4.The synchronous machine -- 7.4.1.Electromagnetic model -- 7.4.2.Electro-mechanical model -- 7.4.3.Interfacing machine to network -- 7.4.4.Types of rotating machine available -- 7.5.Summary -- References -- 8.Control and protection -- 8.1.Introduction -- 8.2.Transient analysis of control systems -- 8.3.Control modelling in PSCAD/EMTDC -- 8.3.1.Example -- 8.4.Modelling of protective systems -- 8.4.1.Transducers -- 8.4.2.Electromechanical relays -- 8.4.3.Electronic relays -- 8.4.4.Microprocessor-based relays -- 8.4.5.Circuit breakers -- 8.4.6.Surge arresters -- 8.5.Summary -- References -- 9.Power electronic systems -- 9.1.Introduction -- 9.2.Valve representation in EMTDC -- 9.3.Placement and location of switching instants -- 9.4.Spikes and numerical oscillations (chatter) -- 9.4.1.Interpolation and chatter removal -- 9.5.HVDC converters -- 9.6.Example of HVDC simulation -- 9.7.FACTS devices -- 9.7.1.The static VAr compensator -- 9.7.2.The static compensator (STATCOM) -- 9.8.State variable models -- 9.8.1.EMTDC/TCS interface implementation -- 9.8.2.Control system representation -- 9.9.Summary -- References -- 10.Frequency-dependent network equivalents -- 10.1.Introduction -- 10.2.Position of FDNE -- 10.3.Extent of system to be reduced -- 10.4.Frequency range -- 10.5.System frequency response -- 10.5.1.Frequency-domain identification -- 10.5.2.Time-domain identification -- 10.6.Fitting of model parameters -- 10.6.1.RLC networks -- 10.6.2.Rational function -- 10.7.Vector fitting -- 10.8.Model implementation -- 10.9.Examples -- 10.10.Summary -- References -- 11.Steady-state assessment -- 11.1.Introduction -- 11.2.Phase-dependent impedance of non-linear device -- 11.3.The time-domain in an ancillary capacity -- 11.3.1.Iterative solution for time invariant non-linear components -- 11.3.2.Iterative solution for general non-linear components -- 11.3.3.Acceleration techniques -- 11.4.The time-domain in the primary role -- 11.4.1.Harmonic assessment historically -- 11.4.2.Basic time-domain algorithm -- 11.4.3.Time-step -- 11.4.4.Dc System representation -- 11.4.5.Ac System representation -- 11.5.Discussion -- References -- 12.Mixed time-frame simulation -- 12.1.Introduction -- 12.2.Description of the hybrid algorithm -- 12.2.1.Individual program modifications -- 12.2.2.Dataflow -- 12.3.TS/EMTDC interface -- 12.3.1.Equivalent impedances -- 12.3.2.Equivalent sources -- 12.3.3.Phase and sequence data conversions -- 12.3.4.Interface variables derivation -- 12.4.EMTDC to TS data transfer -- 12.4.1.Data extraction from converter waveforms -- 12.5.Interaction protocol -- 12.6.Interface location -- 12.7.Test system and results -- 12.8.Discussion -- References -- 13.Transient simulation in real-time -- 13.1.Introduction -- 13.2.Simulation with dedicated architectures -- 13.2.1.Hardware -- 13.2.2.RTDS applications -- 13.3.Real-time and near real-time on standard computers -- 13.3.1.Example of real-time test -- 13.4.Summary -- References -- 14.Applications -- 14.1.Introduction -- 14.1.1.Modelling considerations -- 14.1.2.Time-step and plot-step -- 14.1.3.Avoiding singularities -- 14.1.4.Initialisation -- 14.2.Lightning studies -- 14.2.1.EMT modelling -- 14.2.2.Back-flashover modelling -- 14.2.3.Surge arrester modelling -- 14.2.4.Direct lightning strike to phase conductor -- 14.2.5.Lightning strike to ground wire or tower -- 14.3.Capacitor switching studies -- 14.3.1.Inrush -- 14.3.2.Back-to-back switching -- 14.3.3.Voltage magnification -- 14.4.Transformer energisation -- 14.4.1.Parallel sympathetic interaction -- 14.4.2.Other issues -- 14.4.3.Mitigation -- 14.4.4.Modelling -- 14.5.Transient recovery voltage studies -- 14.6.Voltage dips/sags -- 14.6.1.Examples -- 14.7.Voltage fluctuations -- 14.7.1.Modelling of flicker penetration -- 14.8.Voltage notching -- 14.9.Wind power -- 14.9.1.Type 3 WTG -- 14.9.2.Type 4 WTG -- 14.10.Solar photovoltaic farm -- 14.11.HVDC -- 14.11.1.HVDC using LCC -- 14.11.2.HVDC using VSC -- 14.12.Ferroresonance -- 14.13.Electric vehicle charging -- 14.14.Heat-pumps/air-conditioners -- 14.15.Battery storage -- 14.16.Summary -- References -- Appendix A System identification techniques -- A.1.s-Domain identification (frequency-domain) -- A.2.z-Domain identification (frequency-domain) -- A.3.z-Domain identification (time-domain) -- A.4.Prony analysis -- A.5.Recursive least-squares curve-fitting algorithm -- Appendix B Numerical integration -- B.1.Review of classical methods -- B.2.Truncation error of integration formulae -- B.3.Stability of integration methods -- Appendix C Test systems data -- C.1.CIGRE HVDC benchmark model -- C.2.Lower South Island (New Zealand) system -- Appendix D Developing difference equations -- D.1.Root-matching technique applied to a first-order lag function -- D.2.Root-matching technique applied to a first-order differential pole function -- D.3.Difference equation by bilinear transformation for RL series branch -- D.4.Difference equation by numerical integrator substitution for RL series branch -- D.5.Equivalence of trapezoidal rule and bilinear transform -- Appendix E MATLAB® code examples -- E.1.Voltage step on RL branch -- E.2.Diode-fed RL branch -- E.3.General version of example E.2 -- E.4.Frequency response of difference equations.
- Subject(s):
- ISBN:
- 9781785614996 (hbk.)
1785614991 - Note:
- Previous edition: London: Institution of Electrical Engineers, 2003.
- Bibliography Note:
- Includes bibliographical references and index.
View MARC record | catkey: 26772596