Actions for Modular systems for energy and fuel recovery and conversion
Modular systems for energy and fuel recovery and conversion / Yatish T. Shah
- Author
- Shah, Yatish T.
- Published
- Boca Raton, FL : CRC Press, Taylor & Francis Group, [2020]
- Physical Description
- xxvii, 535 pages ; 25 cm.
- Series
- Contents
- Machine generated contents note: 1.1.Introduction -- 1.1.1.Basic Perspectives on Modular Approach -- 1.2.Why Modular System/When Does It Make Sense? -- 1.2.1.Advantages of Modular Operations -- 1.2.1.1.Single-Source Responsibility -- 1.2.1.2.More Accurate Pricing and Possibilities of Lower Capital Investment -- 1.2.1.3.Improved Project Timeline and More Timely Delivery -- 1.2.1.4.Better Quality and Flexibility for Subsequent Improvements -- 1.2.1.5.Cost Savings -- 1.2.1.6.Safety and Convenience -- 1.2.1.7.More Size and Space Options -- 1.2.1.8.Innovation Diffusion -- 1.2.2.Drawbacks of Modular Operations -- 1.2.2.1.Transportation -- 1.2.2.2.Upfront Engineering -- 1.2.2.3.Labor Availability -- 1.2.3.When to Go Modular -- 1.2.4.How to Go Modular -- 1.2.5.Going Small to Grow Big -- 1.3.Examples of Successful Use of Modular Approach in Various Industries -- 1.3.1.Modularity in Construction Industries -- 1.3.2.Modularity in Vehicle Industry -- 1.3.2.1.Automobile Industry -- 1.3.2.2.Aerospace Industry -- 1.3.3.Impact of Modularity in Computer Industry -- 1.3.3.1.Modular Computing -- 1.4.How Does Modular Approach Better Handle Major Game Changers in Energy Industry? -- 1.4.1.Acceleration of Advanced Energy Technology -- 1.4.2.Mobility Revolution -- 1.4.3.Energy System Fragmentation -- 1.5.Strategies for Modular Approaches in Both Centralized and Distributed Energy Industry -- 1.5.1.Centralized versus Distributed Energy Systems -- 1.5.2.The Centralized Paradigm -- 1.5.2.1.Main Drawbacks of the Centralized Paradigm -- 1.5.3.The Paradigm of Distributed Generation -- 1.6.Organization Transformations in Modular Environment -- 1.7.Innovation Infusion in Centralized versus Decentralized Modular Clusters -- 1.8.An Example of Strategy for Modular Energy System Management -- 1.9.Organization of the Book -- References -- 2.1.Introduction -- 2.2.Modular Coal Mining Operations -- 2.2.1.The IntelliMine Suite -- 2.3.Modular Coal Preparation Plant -- 2.3.1.Schenck Coal Washing Plant -- 2.3.2.CLI Modular Coal Preparation Plant -- 2.3.3.GBM Construction Modular Coal Prep Plant -- 2.3.4.Coal Preparation Module from HOT Mining -- 2.3.5.Ingwenya Mineral Tech Coal Washing Plant -- 2.3.6.Heavy Media Modular Coal Cleaning -- 2.3.7.LIMN Software Package -- 2.3.8.LARCODEMS -- 2.4.Modular Direct Coal Liquefaction System -- 2.5.Modular Coal Gasification Process and Associated Unit Operations -- 2.5.1.Radically Engineered Modular Systems for Coal Gasification -- 2.5.1.1.Background and Technical Details -- 2.5.1.2.Modularization of Emerging Gasification Technologies -- 2.5.1.3.Modularization of Advanced Air Separation Technologies -- 2.5.1.4.Small Field Pilot FEED Study -- 2.5.2.Modular Klean Coal Gasifier -- 2.5.3.Nuclear Process Heat for Modular Coal Gasification -- 2.5.3.1.US Project with Modular PRISM Reactor -- 2.5.3.2.Reactor Design -- 2.5.3.3.Load Following -- 2.5.3.4.Heat Pump -- 2.5.3.5.Gasifier -- 2.5.4.EPIC's Gasification -- 2.5.4.1.Gasifier -- 2.5.4.2.Sulfur Removal -- 2.5.4.3.Coal-to-Chemicals -- 2.6.Modular CO2 Capture and Other Downstream Operations -- 2.6.1.MaxxFrac Modular CO2 Capture Systems -- 2.6.2.Modular Multi-Bed PSA/Vacuum Swing Adsorption System -- 2.6.3.Continuous Modular Biomimetic Utilization of Carbon Dioxide towards Multi- and Chemo-Enzymatic Systems -- 2.6.4.Leroux and Lotz Turnkey Modular Unit for CO2 Capture and Separation -- 2.6.5.KOCH Carbon Dioxide (CO2) Capture Modular Plant -- 2.6.6.HTC Modular Low-Cost CO2 Capture -- 2.6.7.GE Modular ABMet® System -- 2.6.8.EPIC Modular Unit Operations for Downstream Operations -- 2.7.Modular Approach to Conventional Coal Power Plants -- 2.7.1.Total versus Component Modularization -- 2.7.2.Performance of Total Modularization -- 2.7.3.Component Modularization -- 2.7.4.Modularization of New Construction -- 2.7.5.Other Benefits of Modularization -- 2.8.Modular IGCC Operations -- 2.8.1.SES Modular Gasification Technology -- 2.8.1.1.Pairing SES Gasification Technology with GE's Power Generation Technology -- 2.8.2.EPIC Modular IGCC Process -- 2.8.3.E-Gas[™] Technology for Coal and Petcock Conversion -- 2.9.Modular Approach to Implement HELE Technologies -- 2.9.1.Nordjylland Power Station Unit 3, Denmark -- 2.9.2.Trianel Kohlekraftwerk Liinen, Germany -- 2.9.3.John W. Turk Jr. Power Plant -- 2.9.4.ISOGO New Units 1 and 2, Japan -- 2.9.5.The Future of Hele Technology -- 2.10.Modular Simulation of Coal Gasification for Power Plant -- References -- 3.1.Introduction -- 3.2.Improved Oil Well Performance with Modular Approach -- 3.2.1.3rd Gen Modular Executions' -- 3.2.2.Siemens' Modular Automated Oil Production -- 3.3.Streamlining Offshore Construction with a Modular Approach -- 3.3.1.Delta House Modular Project -- 3.3.1.1.Modularization Challenges -- 3.3.1.2.Cutting Maintenance Costs While Improving Safety -- 3.3.1.3.Automation 3,000m under the Sea -- 3.3.1.4.Precursor to Autonomous Operation -- 3.3.1.5.Streamlining Projects -- 3.3.1.6.Leveraging Technology Saves Time -- 3.3.1.7.Modularization Streamlines Schedules -- 3.3.2.The Modularization by KBR for Offshore Operation -- 3.3.3.Sumner Modular Offshore Structures System -- 3.3.4.Modular Methodology for Offshore Support Vessels -- 3.3.4.1.Role of Modularity in Offshore Vessels -- 3.4.Modular Oil Recovery and Upgrading Processes -- 3.4.1.Enhanced Oil Production and Upgrading by Modular Approach-TOTAL Experience -- 3.4.1.1.Modular Optimization Challenge -- 3.4.1.2.Modular Optimization -- 3.4.2.Modular Novel EOR System -- 3.4.2.1.Process Description -- 3.4.3.SONNEK Containerized Pumping Systems for EOR -- 3.4.4.Innovative Siemens Water Treatment and Reinjection Solution for EOR -- 3.4.5.An Extended Model for Ultrasonic-Based Enhanced Oil Recovery with Experimental Validation -- 3.4.6.Novel Modular Approaches for SAGD Process for Heavy Oil Upgrading -- 3.4.6.1.James Transportable Modular Heavy Oil Process -- 3.4.6.2.Blue Modular Treatment to Heavy Oil -- 3.4.6.3.Lourenco and Murphy Heavy Oil Preparation -- 3.4.6.4.IDE Steam Injection Technology for Canadian Oil Sands -- 3.4.7.FluidOil Modular Viscositor Heavy-to-Light Process -- 3.4.8.Nexgen E2 Upgrader -- 3.5.Modular Oil Refinery -- 3.5.1.Modular Mini-Refinery Configurations -- 3.5.2.Modular Mini-Refinery versus Conventional Refinery -- 3.5.3.Honeywell UOP Modular Refinery -- 3.5.3.1.UOP Pakistan Contract -- 3.5.4.PPE Modular and Full-Scale Refineries -- 3.5.5.Proxion Modular Mini-Refineries -- 3.5.6.SEERS Modular Refineries -- 3.5.7.Chemex Modular Refineries -- 3.5.8.REOTEK Modular Refineries -- 3.5.9.TSE Modular Refineries -- 3.5.10.Modular Mini-Refineries in Other Countries -- 3.5.10.1.Mini-Refinery Design and Installation Services in India -- 3.5.10.2.Mini-Refineries in Nigeria -- 3.5.10.3.Siberian Mini-Refineries -- 3.5.10.4.Micro-Oil Refinery in Sakha, Russia -- 3.6.Modular Waste Oil Recovery, Cleaning, and Upgrading -- 3.6.1.An Onboard Vacuum Suction Spilled Oil Recovery System -- 3.6.2.SingleBox Is the World's Lightest and Most Efficient Brush Cassette Solution for Recovering Heavy Oil -- 3.6.3.Enviro Concepts Modular Wash Bay -- 3.6.4.Modular Design by Marine Well Containment Co -- 3.6.5.AGC Modular Re-Refining -- 3.6.6.Rapid Deployment Modular Skimmer System -- 3.6.6.1.Spill Recovery Bladders -- 3.6.6.2.Oil Containment Boom, Model USS-42 High Buoyancy -- 3.6.7.Oil Purification through Modular Liquid-Liquid Extraction -- 3.6.8.Cost-Effective Modular Unit for Cleaning Oil and Gas Field Wastewater -- References -- 4.1.Introduction -- 4.2.Modular Natural Gas Recovery Operations -- 4.2.1.The New Archer Topaz Modular Rig -- 4.2.2.Flexible and Modular "Natural Gas Operating Fleet" -- 4.3.Modular Gas Processing Operations -- 4.3.1.Modular Gas Processing Plants by Honeywell UOP -- 4.3.2.Modular Gas Processing Plants by CB&I -- 4.3.2.1.Description -- 4.3.3.Pioneer Energy Modular Gas Processing Plants -- 4.4.Modular GTL Operations -- 4.4.1.INFRA Technology for GTL Conversion -- 4.4.2.Ceramatec-University of Wyoming (WRI) Technology -- 4.4.3.Oxford Catalyst Group (Velocys) Modular GTL Process for Landfill Gas -- 4.4.4.Single-Step GasTechno Process for Stranded Gas -- 4.4.5.Maverick Modular Process for Conversion of Biogas to Methanol -- 4.4.6.Ventech Modular Design of Smaller-scale GTL Plants -- 4.4.7.Battelle Compact High-Throughput Modular FT Reactor with Monolithic Catalyst Bed -- 4.4.8.Modular Conversion of Onshore- and Offshore Associated GTLs -- 4.4.8.1.Modular Compact GTL (UK) Process for Offshore Associated Gas -- 4.4.8.2.DSME Floating Modular GTL Technology -- 4.4.8.3.Modular-Verdis GTD (Gas-to- Diesel) Technology for Onshore Associated Gas -- 4.5.Modular Gas Power Plants -- 4.5.1.Location-Independent Cogeneration Power Plants from MWM -- 4.5.2.General Electric Modular Gas Power Plant -- 4.5.3.Energy Choice's Modular Power Generation Systems -- 4.5.4.CAI/Spirit Modular Power Generation -- 4.5.5.Generac's Modular Power Systems -- 4.6.Options for Small-Scale Modular Distributed Hydrogen Production -- 4.7.Modular Hydrogen Production by Steam Reforming -- 4.7.1.Small Modular Scale SMR (Natural Gas) -- 4.7.2.Modular Steam Reformer Units in the HyFLEET:CUTE Project -- 4.7.3.Hy.GEN® On-Site Hydrogen Generation -- 4.7.4.ChemPro Hydrogen Generation and Purification Modular Plants -- 4.7.5.Hydro-Chem. Division of Linde Engineering: HYDROPRIME®. Modular Hydrogen Generators Using SMR -- 4.7.6.Plate-Type Steam-Methane Reformers -- 4.7.7.Membrane Reactors for Steam Reforming -- 4.7.8.Praxair Low-Cost Hydrogen Production Platform -- 4.7.9.CHA Modular Microwave Steam Reforming -- 4.7.10.Modular Hydrogen Production by Methanol Steam Reforming -- 4.8.Modular Hydrogen Production by Electrolysis -- 4.8.1.Low-Temperature Electrolysis -- 4.8.1.1.Idroenergy's NOVEL On-Site Hydrogen Production -- 4.8.1.2.Modular HySTAT Hydrogen Fueling Station -- 4.8.1.3.H, Logic Fuel Station -- 4.8.1.4.SERC Hydrogen Fuel Station --, Contents note continued: 4.8.2.High-Temperature Electrolysis -- 4.9.Modular Hydrogen Production by Thermochemical Dissociation -- 4.10.Modular Hydrogen Production by Other Physical, Chemical, and Biological Methods -- References -- 5.1.Introduction -- 5.2.Modular Biomass Feed Preparation -- 5.2.1.Modular Drying Process -- 5.2.1.1.GSI Modular Tower Dryers -- 5.2.1.2.GlenFarrow Biomass Dryer -- 5.2.1.3.SWISS COMBI Belt Dryer -- 5.2.1.4.Lauber Lenz Modular Drying Systems -- 5.2.1.5.STELA Laxhuber GmbH Low- Temperature Dryer -- 5.2.1.6.Drying of Sludge and Other Suspensions with the Low-Temperature-Dryers of SULZLE KLEIN -- 5.2.2.Modular Grinding System for Biomass -- 5.2.3.Modular Pelletizing System -- 5.2.3.1.MOPET-Mobile Biomass Pelletizing System -- 5.2.3.2.Modular Bioburn Biomass Pelletizing System -- 5.3.Modular Biomass and Waste Gasification Processes -- 5.3.1.Modular Biomass Gasification-Based Solid Oxide Fuel Cells for Sustainable Development -- 5.3.2.Alternative Energy Solutions International Modular Biomass Gasification -- 5.3.3.EPIC'S Modular Coal and Biomass Gasification System -- 5.3.4.Modular and Distributed Methods and Systems to Convert Biomass to Syngas -- 5.3.5.ICM Modular Advanced Gasification Technology -- 5.3.6.TITUS Modular Gasification Process -- 5.3.7.GIPO Modular On-Site Waste-to-Energy System -- 5.3.8.PHE Modular Energy System -- 5.3.9.In Situ Modular Retrieval and Treatment System for Biological Gasification of Shallow Buried Waste -- 5.3.9.1.Conceptual Description -- 5.3.10.Modular Fuel Technology to Boost Bio-Share of Oil Refineries -- 5.3.11.Modular Anaerobic Digestion System -- 5.4.Modular Bioethanol Plant -- 5.4.1.Totally Integrated Automation in Modular Bioethanol Production -- 5.4.2.Easy Energy System's Modular Ethanol Production System -- 5.4.3.Allard Modular Cellulose Ethanol Refinery -- 5.4.4.ChemPro/BEI Modular CELLULOSic ETHANOL Process -- 5.4.5.Western Milling Modular Ethanol Plants -- 5.4.6.National Corn to Ethanol Research Center Modular Bioethanol Pilot Plant -- 5.4.7.Modular Waste Materials to Ethanol Sulzer Plant -- 5.4.8.Diversified Ethanol Corporation Provides New Small-Scale Ethanol Plants Using Highly Efficient Waste -- 5.5.Modular Biofuel and Biochemicals Refinery -- 5.5.1.Modularized System and Method for Urea Production Using a Biomass Feedstock -- 5.5.2.Modular Biodiesel Production: Colocating Plant and Feedstock -- 5.5.2.1.Feedstock Options -- 5.5.3.An Effective Modular Process for Biodiesel Manufacturing Using Heterogeneous Catalysis -- 5.6.Modular Biopower or Bioenergy Systems -- 5.6.1.DOE's Initiative for Modular, Biomass Power Generation -- 5.6.2.Hoskinson Group Modular System for Waste Treatment -- 5.6.3.Wastewoima®-The Modular Waste-to-Energy Power Plant -- 5.6.3.1.Power Generation -- 5.6.4.Modul-Pak® Biomass Boiler Systems -- 5.6.5.HoSt Modular Biomass and Wood Boilers -- 5.6.6.AESI Biomass Modular Power Systems -- 5.6.7.The BioMax®100 Gene Modular Biopower System -- 5.6.7.1.The BioMax® Energy Farm -- 5.6.8.GAIA Bioenergy Modular Systems -- 5.6.8.1.Overview of the GAIA Fuel System -- 5.6.9.The SIRIUS Modular System-One System That Helps You Solve All Switching Tasks -- 5.7.Micro-Modular Biopower Systems -- 5.7.1.Micro-Modular Biopower Systems for Cooling -- 5.7.2.Global Small- and Micro-Scale Modular Waste- to-Energy Power Plants -- 5.7.2.1.The Energos Grate Combustion and Gasification Technology -- 5.7.2.2.NOVO Energy Inclined Fixed Grate Combustion Technology -- 5.7.2.3.IST Energy GEM -- 5.7.2.4.Envikraft/Scan American Corporation Technology Description -- 5.7.2.5.KI Energy Plant -- References -- 6.1.Introduction -- 6.2.Small Modular Nuclear Reactors -- 6.2.1.Advantages of SMR -- 6.2.1.1.Innovations -- 6.2.1.2.Safety Features -- 6.2.1.3.Easier Load Following -- 6.2.1.4.Waste Reduction -- 6.2.1.5.Nonproliferation -- 6.2.2.Disadvantages and Issues of SMR -- 6.2.2.1.Economics -- 6.2.2.2.Licensing -- 6.2.2.3.Other Disadvantages -- 6.3.US Support for SMRs -- 6.4.Global Landscape on the Development of Small Modular Nuclear Reactor -- 6.4.1.United States -- 6.4.1.1.Light Water Reactor -- 6.4.1.2.PWR -- 6.4.1.3.High-Temperature Gas-Cooled Reactors -- 6.4.1.4.Pebble-Bed Reactor -- 6.4.1.5.Hybrid SMR -- 6.4.1.6.Supercritical CO2 Reactor -- 6.4.1.7.Fast-Neutron Reactors -- 6.4.1.8.Traveling Wave Reactor -- 6.4.1.9.Molten Salt Reactor -- 6.4.2.Canada -- 6.4.3.Argentina/Brazil -- 6.4.4.Russia -- 6.4.4.1.Floating Nuclear Power Plant -- 6.4.4.2.PWR -- 6.4.4.3.Boiling Water Reactor -- 6.4.4.4.HTR (Fast-Neutron Reactor) -- 6.4.5.France -- 6.4.5.1.PWR -- 6.4.5.2.FNNP -- 6.4.6.Netherland/United Kingdom/Sweden/Denmark -- 6.4.7.China -- 6.4.7.1.PWR -- 6.4.7.2.Floating Nuclear Power Plant -- 6.4.7.3.HTR (Fast-Neutron Reactor) -- 6.4.8.South Korea/Japan -- 6.4.8.1.PWR -- 6.4.8.2.HTR -- 6.4.9.India/Indonesia -- 6.4.10.South Africa -- 6.5.Modular Nuclear Power Plants -- 6.5.1.Modular Nuclear Reactor for a Land-Based Power Plant -- 6.5.2.Development of Gas Turbine Modular HTGR Power Plant -- 6.5.2.1.HTR-MODULE -- 6.5.2.2.HTR-100 -- 6.5.2.3.VertiGreen 3D Modular Trellis Panels (VGM) -- 6.5.2.4.MHTGR -- 6.5.2.5.Modular HTGR Gas Turbine Plant Development -- 6.5.2.6.Pebble-Bed Modular Reactor -- 6.5.2.7.Gas Turbine-Modular Helium Reactor (GT-MHR) -- 6.5.2.8.Japan's HTGR Gas Turbine Designs -- 6.5.2.9.MIT and INEEL's MPBR Plant -- 6.5.2.10.INET's MHTGR-IGT -- References -- 7.1.Introduction -- 7.2.Modular Novel Wind Towers -- 7.2.1.Northstar Modular Wind Tower -- 7.2.2.Design of 1.5 MW Modular Wind Turbine Tower for Thailand -- 7.2.3.Siedel Modular Kit for a Wind Turbine Tower -- 7.2.4.Fernandez Modular Tower Structure for Eolic Turbines -- 7.2.5.Siemens Modular Concrete Wind Tower Technology -- 7.2.5.1.Hexcrete: A New Concept for Taller Wind Turbine Towers -- 7.3.Modular Novel Wind Blade Designs -- 7.3.1.Folding, Modular Rotor Blades Designed for Giant Wind Turbines -- 7.3.2.The Concept of Segmented Wind Turbine Blades -- 7.3.2.1.Transportation of Wind Turbine Blades -- 7.3.2.2.Modular Gamesa Segmented Design -- 7.3.2.3.Blade Dynamics Modular Wind Turbine Blade -- 7.3.2.4.Modular Wind Energy Blades -- 7.3.2.5.Experimental Validation of the Structural Integrity of Modular Horizontal-Axis Wind Turbine Blades -- 7.3.3.Plastic Modular Wind Blades by Motor Wave Group -- 7.4.Modular Novel Wind Turbines -- 7.4.1.Urban Modular Architectural Wind Power Small or Microturbines Share -- 7.4.1.1.MOWEA Cube 400-Modular Rooftop Wind Turbine -- 7.4.2.Airborne Modular Wind Energy Systems -- 7.4.2.1.E.ON Invests in Innovative Drone-Based Airborne Wind Energy -- 7.4.3.A Lego-Style Wind Turbine -- 7.4.4.Novel Offshore Wind Turbines -- 7.4.4.1.Modular Tension-Leg-Platform (TLP) Structure for Offshore Wind Turbines -- 7.4.4.2.A Modular and Cost-Effective Superconducting Generator Design for Offshore Wind Turbines -- 7.4.4.3.Accio Energy Modular Offshore Wind Turbine -- 7.4.5.Modular, Permanent-Magnet Wind Turbine Generators -- 7.5.Modular Novel Wind Energy and Power Systems -- 7.5.1.WARP: A Modular Wind Power System for Distributed Electric Utility Application -- 7.5.2.Chen Liao-Hsun Wind Cube Modular Wind Power System -- 7.5.3.Multi-Modular Converters with Automatic Interleaving for SG-Based Wind Energy System -- 7.5.4.Brill Modular Wind Energy Device -- 7.5.5.Enercon Transforms with Modular Approach -- References -- 8.1.Introduction -- 8.2.Modular Solar PV Cells -- 8.2.1.Flexible Solar Panels -- 8.2.2.MAS Modular PV Panel -- 8.3.Korman Modular Portable Solar Energy System -- 8.4.Modular Solar Lighting Concentrating Systems -- 8.4.1.Modular System HSL 3000 -- 8.5.Modular Solar Energy Systems for Power Generation -- 8.5.1.Solar's Modular Power Plant -- 8.5.2.On-Demand SunPods Solar Energy Systems -- 8.5.3.Modular Concentrated Solar Thermal Electric Systems -- 8.5.3.1.Parabolic Trough Concentrating Systems -- 8.5.3.2.Parabolic Dish Concentrating Systems -- 8.5.3.3.Solar Concentrating Systems Using PVs -- 8.5.3.4.Innovative Modular Foldable Concentrating Solar Energy System -- 8.5.3.5.Aora Modular Concentrating Solar Energy Power -- 8.6.Modular Solar Power Trough Power-ORC System -- 8.6.1.Trough-ORC System -- 8.7.Modular Internet of Electricity -- References -- 9.1.Introduction -- 9.2.Modular and Portable Geothermal Power Plants in Kenya -- 9.2.1.Eburru Wellhead Geothermal Pilot Power Plant, Kenya -- 9.2.2.Modular Wellhead Geothermal Power Plants by Green Energy Geothermal Group in Olkaria, Kenya -- 9.2.3.Technologies for Small Power Plants -- 9.2.4.The Impact and Significance of Application of Portable Wellhead Generators to the Integration of Small Geothermal Power Generation in Kenya -- 9.2.4.1.Early Generation for Geothermal Development -- 9.2.5.Integration of Small Power Plants with Agribusiness and Tourism -- 9.3.Small Geothermal Power Modules in Iceland -- 9.4.Modular Geothermal Operations in Other Countries -- 9.5.Modular Organic Rankine Cycle for Geothermal Energy -- 9.5.1.System Description and Methodology -- 9.6.Modular Enhanced Geothermal System -- 9.6.1.Modular Triple-E System -- 9.6.2.Other Similar Approaches -- 9.6.3.Details of the Triple-E Approach -- 9.6.4.Technical Feasibility Analysis -- 9.6.5.Optimizing the Proposed Approach -- References -- 10.1.Introduction -- 10.2.A Technological Assessment of the Wave Energy Converter -- 10.2.1.Assessment of the Available WECs -- 10.3.Modular Fixed and Floating WECs -- 10.3.1.Modular Wave-Eco Converter -- 10.3.2.Modular, Flap-Type WEC -- 10.3.3.Boyd Modular Ocean Wave Power Generator -- 10.3.4.Lewis Modular Lattice Wave Motion Energy Conversion Apparatus -- 10.3.5.Wave Heave Energy Conversion Using Modular Multistability -- 10.3.6.Wave Carpet: An Efficient and Multidirectional Modular Ocean WEC -- 10.3.7.SINN Power's WECs for Coastal and Offshore Structures -- 10.3.8.Drakoo Fixed and Floating WEC -- 10.3.9.Mechanical WEC for Small-Scale Power Generation in the Marine Environment --, and Contents note continued: 10.3.10.Modular Breakwater Harnesses Wave Power -- 10.3.11.Albatern WaveNET-The Floating, Flexible Wave Energy Generator -- 10.4.Modular Tidal Energy System -- 10.4.1.Ramez Modular Tidal Energy System -- 10.4.2.Tidal Energy Platform to Float Off Dutch Coast -- 10.4.3.Pedersen Modular Floating Turbines for Tidal Waves -- 10.4.4.Mobile Modular Floating Turbines to Harness the Power of the Tidal Waves -- 10.5.Modular Hydropower Plants -- 10.5.1.Overview of SHP in United States -- 10.5.2.Perspectives on SMH -- 10.5.2.1.SMH Modules -- 10.5.2.2.Steps to SMH Success -- 10.5.2.3.Research Efforts -- 10.5.2.4.SMH Technology Acceleration -- 10.5.3.Low-Head Modular Hydroelectric Plants -- 10.5.4.Diggs Modular Hydroelectric Power Plant -- 10.5.5.Compact Hydropower -- 10.5.6.Modular Micro Hydropower System -- 10.5.6.1.Micro Hydropower System Turbines -- 10.5.6.2.Pumps and Waterwheels -- References.
- Summary
- "Examining modular approaches for recovery and conversion of energy and fuel, this book illustrates the importance of offering a balance of centralized and distributed energy operations made up of small- and large-scale systems. Coal, oil, natural gas, hydrogen, biomass, waste, nuclear, geothermal solar, wind, and hydroenergy are examined.The book surveys the benefits of the modular approach, where each type of energy system can be most meaningfully applied in the broad-based energy industry, and describes strategies for managing modular systems. It also outlines successful examples of modular approaches implemented across industries and by energy/fuel type"--
- Subject(s)
- ISBN
- 9780367235123 (hardback : acid-free paper)
0367235129 - Bibliography Note
- Includes bibliographical references and index.
View MARC record | catkey: 28033936