Early days of X-ray crystallography / André Authier
- Author:
- Authier, André
- Published:
- Oxford : Oxford University Press, 2013.
- Physical Description:
- 1 online resource : illustrations (black and white)
Access Online
- Oxford scholarship online: ezaccess.libraries.psu.edu
- Contents:
- Machine generated contents note: 1.Significance of the discovery of X-ray diffraction -- 1.1.April 1912: a major discovery -- 1.2.Crystallography on the eve of the discovery of X-ray diffraction -- 1.3.Impact of the discovery on the chemical, biochemical, physical, material, and mineralogical sciences -- 2.The various approaches to the concept of space lattice -- 2.1.The space-filling approach -- 2.2.The close-packing approach -- 2.3.The molecular theories of the early nineteenth century physicists -- 3.The dual nature of light -- 3.1.The existing theories of light before Newton and Huygens -- 3.2.F. M. Grimaldi and the diffraction of light, 1665 -- 3.3.I. Newton and the emission theory, 1672 -- 3.4.C. Huygens and the wave theory, 1678 -- 3.5.T. Young and the interference experiment, 1804 -- 3.6.A. Fresnel and the theory of diffraction, 1819 -- 3.7.A. Einstein and the photoelectric effect, 1905 -- 4.Rontgen and the discovery of X-rays -- 4.1.8 November 1895: first observation -- 4.2.Before the discovery -- 4.3.28 December 1895: Rontgen's preliminary communication -- 4.4.The news of the discovery spread round the world -- 4.5.Further investigations on X-rays by W. C. Rontgen, 1896, 1897 -- 4.6.Prior observations -- 4.7.`Lenard rays' and `Rontgen rays' -- 5.The nature of X-rays: waves or corpuscles? -- 5.1.The nature of cathode rays -- 5.2.The first hypotheses concerning the nature of X-rays -- 5.3.Discovery of γ-rays -- 5.4.Secondary X-rays -- 5.5.J. J. Thomson and the theory of X-ray scattering, 1898, 1903 -- 5.6.C. G. Barkla and X-ray polarization, 1905 -- 5.7.Characteristic X-ray lines -- 5.8.W. H. Bragg and his corpuscular theory of X-rays, 1907 -- 5.9.Diffraction by a slit: estimation of X-ray wavelengths -- 5.10.Derivation of X-ray wavelengths from the consideration of energy elements -- 5.11.J. Stark's atomic constitution of the X-rays, 1909 -- 6.1912: The discovery of X-ray diffraction and the birth of X-ray analysis -- 6.1.Munich in 1912 -- 6.2.Ewald's thesis, 1912 -- 6.3.M. Laue: Privatdozent in A. Sommerfeld's Institute -- 6.4.Ewald's question to Laue, January 1912 -- 6.5.Laue's intuition, January 1912 -- 6.6.W. Friedrich and P. Knipping's experiment: April--May 1912 -- 6.7.The propagation of the news of the discovery and the first reactions -- 6.8.Ewald introduces the reciprocal lattice and the Ewald construction, mid-June 1912 -- 6.9.J. Stark's `corpuscular' interpretation of the Laue diagrams -- 6.10.The news reaches W. H. Bragg: his first reactions -- 6.11.W. L. Bragg and Bragg's law -- 6.12.The viewpoint of a science historian: the Forman--Ewald controversy -- 7.1913: The first steps -- 7.1.First experiments in the reflection geometry -- 7.2.Equivalence of Laue's relations with Bragg's law -- 7.3.M. von Laue's conversion -- 7.4.M. de Broglie and the French Schools -- 7.5.T. Terada, S. Nishikawa, and the Japanese School -- 7.6.W. H. Bragg and the X-ray ionization spectrometer -- 7.7.W. L. Bragg and the first structure determinations -- 7.8.H. G. J. Moseley and the high-frequency spectra of the elements -- 7.9.P. Debye and the temperature factor -- 7.10.Review of one year of X-ray diffraction: the Birmingham, Solvay, and Vienna meetings, autumn 1913 -- 7.11.M. de Broglie and the rotating crystal method -- 7.12.G. Friedel and Friedel's `law', or rule -- 7.13.The first X-ray spectrometer in the United States: the Duane--Hunt law, 1914 -- 7.14.M. von Laue (1914) and the Braggs (1915) are awarded the Nobel Prize -- 8.The route to crystal structure determination -- 8.1.The beginnings -- 8.2.Intensity of the X-ray reflections: first considerations -- 8.3.The first stages of the analysis of crystal structures -- 8.4.C. G. Darwin and the theory of X-ray diffraction, 1914 -- 8.5.Powder diffraction, P. Debye and P. Sherrer, A. W. Hull -- 8.6.Application of the rotating crystal method to X-ray analysis -- 8.7.Absolute intensities: W.L. Bragg 1921 -- 8.8.Extinction: C. G. Darwin 1922 -- 8.9.A few landmark structures -- 9.X-rays as a branch of optics -- 9.1.Optical properties of X-rays -- 9.2.Ewald's dynamical theory of X-ray diffraction, 1917 -- 9.3.Deviation from Bragg's law -- 9.4.The double-crystal spectrometer -- 9.5.The Compton effect and the corpuscular nature of X-rays, 1923 -- 9.6.Laue's dynamical theory of X-ray diffraction, 1931 -- 9.7.Optical properties of wavefields -- 10.Early applications of X-ray crystallography -- 10.1.Chemical sciences -- 10.2.Mineralogical sciences -- 10.3.Materials science -- 10.4.Physical sciences -- 10.5.Biological sciences -- 10.6.X-ray spectroscopy -- 11.Unravelling the mystery of crystals: the forerunners -- 11.1.The terms `crystal' and `crystallography' -- 11.2.From ancient times to the sixteenth century -- 11.3.Thomas Harriot and the stacking of cannon balls, 1591 -- 11.4.Kepler and the six-cornered snowflake (Strena Seu de Nive Sexangula), 1611 -- 11.5.Robert Hooke and Micrographia, 1665 -- 11.6.Rasmus Bartholin and the double refraction of calcite, 1669 -- 11.7.Nicolas Steno and `a solid body enclosed by process of nature within a solid', 1669 -- 11.8.Christiaan Huygens and the structure of calcite, 1678 -- 11.9.D. Guglielmini and Riflessioni filosofiche dedotte dalle figure de' sali, 1688 -- 11.10.T. O. Bergman and `On the various crystalline forms of Iceland spar', 1773 -- 11.11.J.-B. L. Rome de l'Isle and the law of the constancy of interfacial angles, 1783 -- 12.The birth and rise of the space-lattice concept -- 12.1.R.-J. Hauy and the Theory of the structure of crystals, 1784 -- 12.2.W. H. Wollaston and On the elementary particles of certain crystals, 1812 -- 12.3.C. S. Weiss and the Kristallisations-Systeme, 1815 -- 12.4.D. Brewster and On the laws of polarization and double refraction in regularly crystallized bodies, 1818 -- 12.5.F. Mohs and the crystal systems, 1821 -- 12.6.F. E. Neumann, W. Whewell, W. H. Miller, and crystal indices, 1823--1839 -- 12.7.L. A. Seeber and the notion of space lattice, 1824 -- 12.8.M. L. Frankenheim, crystal classes, 1826, and crystal lattices, 1835 -- 12.9.J. F. C. Hessel and the thirty-two crystal classes, 1830 -- 12.10.G. Delafosse, the notion of unit cell and the structural interpretation of hemihedry, 1840 -- 12.11.A. Bravais and Systemes formes par des points distribues regulierement sur un plan ou dans l'espace, 1848 -- 12.12.L. Sohncke and Entwicklung einer Theorie der Kristallstruktur, 1879 -- 12.13.W. Barlow and the Probable nature of the internal symmetry of crystals, 1883 -- 12.14.The 230 space groups: E. S. Fedorov (1891), A. Schoenflies (1891), and W. Barlow (1894).
- Summary:
- The modern applications of X-ray crystallography range from drug design to characterisation of high technology materials. This book tells the story of its pioneers and relates how the first crystal structures were determined.
- Subject(s):
- ISBN:
- 9780191748219 (ebook)
- Bibliography Note:
- Includes bibliographical references and index.
View MARC record | catkey: 28938422