Actions for Molecular electromagnetism [electronic resource] : a computational chemistry approach
Molecular electromagnetism [electronic resource] : a computational chemistry approach / Stephan P.A. Sauer
- Author
- Sauer, Stephan P. A.
- Published
- Oxford : Oxford University Press, 2011.
- Physical Description
- 1 online resource (xiv, 306 pages) : illustrations
Access Online
- Oxford scholarship online: ezaccess.libraries.psu.edu
- Series
- Contents
- Machine generated contents note: 1.Introduction -- pt. I Quantum Mechanical Fundamentals -- 2.The Schrodinger Equation in the Presence of Fields -- 2.1.The Time-Dependent Schrodinger Equation -- 2.2.The Born-Oppenheimer Approximation -- 2.3.Electron Charge and Current Density -- 2.4.The Force due to Electromagnetic Fields -- 2.5.Minimal Coupling---Non-Relativistically -- 2.6.Minimal Coupling---Relativistically -- 2.7.Elimination of the Small Component -- 2.8.The Molecular Electronic Hamiltonian -- 2.9.Gmige Transformations -- 2.10.Further Reading -- 3.Perturbation Theory -- 3.1.The Hellmann-Feynman Theorem -- 3.2.Time-Independent Perturbation Theory -- 3.3.Time-Independent Response Theory -- 3.4.Second Derivatives of the Energy -- 3.5.Density Matrices -- 3.6.The Ehrenfest Theorem -- 3.7.The Off-Diagonal Hypervirial Theorem -- 3.8.The Interaction Picture -- 3.9.Time-Dependent Perturbation Theory -- 3.10.Transition Probabilities and Rates -- 3.11.Time-Dependent Response Theory -- 3.12.Matrix Representation of the Propagator -- 3.13.Pseudo-Perturbation Theory -- 3.14.Further Reading -- pt. II Definition of Properties -- 4.Electric Properties -- 4.1.Electric Multipole Expansion -- 4.2.Potential Energy in an Electric Field -- 4.3.Quantum Mechanical Expressions for Electric Moments -- 4.4.Induced Electric Moments and Polarizabilities -- 4.5.Quantum Mechanical Expressions for Polarizabilities -- 4.6.Molecular Electric Fields and Field Gradients -- 4.7.Further Reading -- 5.Magnetic Properties -- 5.1.Magnetic Multipole Expansion -- 5.2.Potential Energy in a Magnetic Induction -- 5.3.Quantum Mechanical Expression for the Magnetic Moment -- 5.4.Induced Magnetic Moment, Magnetizability, and Nuclear Magnetic Shielding -- 5.5.Quantum Mechanical Expression for the Magnetizability -- 5.6.Molecular Magnetic Fields and ESR Parameters -- 5.7.Induced Magnetic Fields and NMR Parameters -- 5.8.Quantum Mechanical Expression for the NMR Parameters -- 5.9.Sum-over-States Expression for Diamagnetic Terms -- 5.10.The Gauge-Origin Problem -- 5.11.Further Reading -- 6.Properties Related to Nuclear Motion -- 6.1.Molecular Rotation as Source for Magnetic Moments -- 6.2.Quantum Mechanical Expression for the Rotational g Tensor -- 6.3.Rotational g Tensor and Electric Dipole Moment -- 6.4.Rotational g Tensor and Electric Quadrupole Moment -- 6.5.Molecular Rotation as Source for Magnetic Fields -- 6.6.Quantum Mechanical Expression for the Spin Rotation Tensor -- 6.7.Non-Adiabatic Rotational and Vibrational Reduced Masses -- 6.8.Partitioning of the g Factors -- 6.9.Further Reading -- 7.Frequency-Dependent and Spectral Properties -- 7.1.Time-Dependent Fields -- 7.2.Frequency-Dependent Polarizability -- 7.3.Optical Rotation -- 7.4.Electronic Excitation Energies and Transition Moments -- 7.5.Dipole Oscillator Strength Sums -- 7.6.van der Waals Coefficients -- 7.7.Further Reading -- 8.Vibrational Contributions to Molecular Properties -- 8.1.Sum-over-States Treatment -- 8.2.Clamped-Nucleus Treatment -- 8.3.Vibrational and Thermal Averaging -- 8.4.Further Reading -- pt. III Computational Methods for the Calculation of Molecular Properties -- 9.Short Review of Electronic Structure Methods -- 9.1.Hartree-Fock Theory -- 9.2.Excited Determinants and Excitation Operators -- 9.3.Multiconfigurational Self-Consistent Field Method -- 9.4.Configuration Interaction -- 9.5.M0ller-Plesset Perturbation Theory -- 9.6.Coupled Cluster Theory -- 9.7.The Hellmann-Feynman Theorem for Approximate Wavefunctions -- 9.8.Approximate Density Matrices -- 9.9.Further Reading -- 10.Approximations to Exact Perturbation and Response Theory Expressions -- 10.1.Ground-State Expectation Values -- 10.2.Sum-over-States Methods -- 10.3.M0ller-Plesset Perturbation Theory Polarization Propagator -- 10.4.Multiconfigurational Polarization Propagator -- 10.5.Further Reading -- 11.Perturbation and Response Theory with Approximate Wavefunctions -- 11.1.Coupled and Time-Dependent Hartree-Fock -- 11.2.Multiconfigurational Linear Response Functions -- 11.3.Second-Order Polarization Propagator Approximation -- 11.4.Coupled Cluster Linear Response Functions -- 11.5.Further Reading -- 12.Derivative Methods -- 12.1.The Finite-Field Method -- 12.2.The Analytic Derivative Method -- 12.3.Time-Dependent Analytical Derivatives -- 12.4.Further Reading -- 13.Examples of Calculations and Practical Issues -- 13.1.Basis Sets for the Calculation of Molecular Properties -- 13.2.Reduced Linear Equations -- 13.3.Examples of Electron Correlation Effects -- 13.4.Examples of Vibrational Averaging Effects -- 13.5.Further Reading -- pt. IV Appendices -- Appendix A Operators -- A.1.Perturbation Operators -- A.2.Other Electronic Operators -- Appendix B Definitions of Properties -- Appendix C Perturbation Theory Expressions for Properties.
- Summary
- A textbook for a one-semester course for students in chemistry physics and nanotechnology, this book examines the interaction of molecules with electric and magnetic fields as, for example in light. The book provides the necessary background knowledge for simulating these interactions on computers with modern quantum chemical software.
- Subject(s)
- ISBN
- 9780191775109 (ebook)
- Bibliography Note
- Includes bibliographical references and index.
View MARC record | catkey: 28938439