Quantum machines : measurement and control of engineered quantum systems / edited by Michel Devoret, Benjamin Huard, Robert Schoelkopf Leticia F. Cugliandolo
- Conference Author
- Ecole d'été de physique théorique (Les Houches, Haute-Savoie, France) (96th : 2011), creator
- Published
- Oxford : Oxford University Press, 2014.
- Physical Description
- 1 online resource (xxxi, 568 pages) : illustrations (black and white)
- Additional Creators
- Devoret, Michel H., Huard, Benjamin, Schoelkopf, Robert, and Cugliandolo, L. F. (Leticia F.)
Access Online
- Oxford scholarship online: ezaccess.libraries.psu.edu
- Contents
- Machine generated contents note: pt. I Lectures -- 1.Real-time feedback control of quantum optical input-output systems / H. Mabuchi -- 1.1.Scope and outline of the chapter -- 1.2.Input-output models and circuit theory -- 1.3.Limit theorem for QSDEs; cavity QED relay model -- 1.4.State observers and recursive filters in classical feedback control theory -- References -- 2.Quantum noise and quantum measurement / A. Clerk -- 2.1.Introduction -- 2.2.Quantum noise spectral densities: some essential features -- 2.3.Quantum limit on QND qubit detection -- 2.4.Quantum limit on linear amplification: the op-amp mode -- 2.5.Quantum limit on a linear amplifier: scattering mode -- References -- 3.Circuit QED: superconducting qubits coupled to microwave photons / S. M. Girvin -- 3.1.Introduction to quantum machines -- 3.2.Quantum electrical circuits -- 3.3.Superconductivity -- 3.4.Superconducting qubits -- 3.5.Noise-induced decoherence in qubit circuits -- 3.6.Introduction to cavity and circuit QED -- 3.7.Quantum measurements in circuit QED -- 3.8.Summary and future directions -- 3.9.Appendix -- Acknowledgments -- References -- 4.Quantum logic gates in superconducting qubits / J. M. Martinis -- 4.1.Introduction -- 4.2.Transition logic gates -- 4.3.Tunable frequency logic -- 4.4.Refocusing -- 4.5.Quantum von Neumann architecture and RezQu protocol -- 4.6.Conclusions -- References -- 5.Exploring quantum matter with ultracold atoms / I. Bloch -- 6.Readout of superconducting qubits / D. Esteve -- References -- 7.Quantum error correction / I. L. Chuang -- 7.1.Unraveling open quantum system dynamics -- 7.2.Reversing quantum noise -- 7.3.Quantum error correction -- 7.4.Modern quantum codes -- 7.5.Fault-tolerant quantum computation -- References -- 8.Quantum optomechanics / F. Marquardt -- 8.1.Introduction -- 8.2.Basic linearized dynamics of optomechanical systems -- 8.3.Nonlinear dynamics -- 8.4.Basic quantum state manipulations -- 8.5.Optomechanical entanglement -- 8.6.Fundamental tests of quantum mechanics -- 8.7.Hybrid systems -- 8.8.Ultrastrong coupling -- 8.9.Multimode optomechanical systems -- References -- 9.Micromechanics and superconducting circuits / K. W. Lehnert -- 9.1.Introduction -- 9.2.Electromechanics of superconducting circuits -- 9.3.Measuring oscillator motion -- 9.4.Quantum description of an electromechanical circuit -- Acknowledgments -- References -- 10.Two-electron spin qubits in GaAs: control and dephasing due to nuclear spins / H. Bluhm -- 10.1.Introduction -- 10.2.Two-electron logical spin qubits -- 10.3.Single-qubit gates -- 10.4.Universal single-qubit rotations -- 10.5.Controlling the nuclear environment -- 10.6.Decoupling from the nuclear bath -- 10.7.Semiclassical picture of dephasing -- References -- 11.Exploring the quantum world with photons trapped in cavities and Rydberg atoms / J.-M. Raimond -- 11.1.Introduction -- 11.2.A spin and a spring -- 11.3.Ideal QND measurement of the photon number: the quantum jumps of light -- 11.4.Monitoring the decoherence of mesoscopic quantum superpositions -- 11.5.An experiment on quantum feedback -- 11.6.Reservoir engineering -- 11.7.Conclusions and perspectives -- References -- 12.SQUID amplifiers / A. Kamal -- 12.1.Introduction and overview -- 12.2.The resistively shunted Josephson junction -- 12.3.The dc SQUID -- 12.4.Low-frequency SQUID amplifiers -- 12.5.High-frequency SQUID amplifiers: the quantum limit -- 12.6.The microstrip SQUID amplifier -- 12.7.Concluding remarks -- Acknowledgments -- References -- 13.Quantum information science: experimental implementation with trapped ions / R. Blatt -- 13.1.Introduction -- 13.2.Ion-trap quantum computers: the concept -- 13.3.Quantum teleportation and entanglement swapping -- 13.4.A new universal set of quantum gates for high-fidelity ion-trap quantum computers -- 13.5.Scalable ion-trap quantum computers -- 13.6.Summary and perspectives -- Acknowledgments -- References -- pt. II Seminars -- 14.An introduction to laser cooling optomechanical systems / J. G. E. Harris -- 14.1.Quantum machines and optomechanics -- 14.2.Harmonic oscillators -- 14.3.Optomechanics -- 14.4.Laser cooling -- 14.5.Conclusion and summary -- Acknowledgments -- References -- 15.Tomography schemes for characterizing itinerant microwave photon fields / A. Wallraff -- 15.1.Optical and microwave frequency field detection -- 15.2.Quantum state reconstruction based on single-channel field quadrature detection -- 15.3.Experimental reconstruction of single-photon Fock states -- Acknowledgments -- References -- 16.Using a "frictionless" pendulum for quantum measurement / I. Siddiqi -- References -- 17.Quantum Bayesian approach to circuit QED measurement / A. N. Korotkov -- 17.1.Introduction and qualitative discussion -- 17.2.Broadband measurement -- 17.3.Phase-preserving versus phase-sensitive amplifiers -- 17.4.Narrowband (circuit QED) measurement -- 17.5.Conclusion -- Acknowledgments -- References -- 18.Superconducting quantum circuits: artificial atoms coupled to ID modes / Y. Nakamura -- 18.1.Introduction -- 18.2.0D and 1D, not more -- 18.3.Strong coupling in 1D -- 18.4.More functionalities with three-level atoms -- 18.5.Conclusions -- Acknowledgments -- References -- 19.A superconducting artificial atom with two internal degrees of freedom / O. Buisson.
- Summary
- What is a quantum machine? Can we say that lasers and transistors are quantum machines? After all, physicists advertise these devices as the two main spin-offs of the understanding of quantum physics. In a true quantum machine, the signal collective variables must themselves be treated as quantum operators. Other engineered quantum systems based on natural, rather than artificial, degrees of freedom can also qualify as quantum machines. This book provides the basic knowledge needed to understand and investigate the physics of these novel systems.
- Subject(s)
- ISBN
- 9780191761454 (ebook)
- Note
- Selected conference papers.
- Bibliography Note
- Includes bibliographical references.
View MARC record | catkey: 28938471