Handbook of materials failure analysis : with case studies from the electronic industries / edited by Abdel Salam Hamdy Makhlouf and Mahmood Aliofkhazaraei
- Published
- Kidlington, Oxford, United Kingdom : Butterworth-Heinemann, 2017.
- Physical Description
- 1 online resource
- Additional Creators
- Makhlouf, Abdel Salam Hamdy and Aliofkhazraei, Mahmood
Access Online
- Contents
- Machine generated contents note: pt. 1 Electronics industries -- ch. 1 Failures of electronic devices: solder joints failure modes, causes and detection methods / Abdel Salam Hamdy Makhlouf -- 1.1.Introduction -- 1.2.Thermal cycling -- 1.3.Shock and vibration -- 1.4.Failure detection methods in electronics industry -- 1.5.Conclusion -- 1.6.Recommendations -- References -- ch. 2 Electron beam radiation and its impacts to failure analysis in semiconductor industry / Zhiqiang Mo -- 2.1.Introduction -- 2.2.Impact of electron beam radiation damage during SEM failure analysis -- 2.2.1.SEM physical FA and low-k/ultralow-k dielectrics -- 2.2.2.Electron beam radiation damage to low-k and ultralow-k dielectric materials -- 2.2.3.Control of electron beam radiation damage to low-k and ultralow-k dielectric materials -- 2.3.Impact of electron beam radiation during FIB and TEM failure analysis: radiation damage to LK and ULK dielectrics -- 2.3.1.Electron beam radiation damage during electron beam survey before focus ion beam milling -- 2.3.2.Electron beam radiation damage during electron beam coating before focus ion beam milling -- 2.3.3.Electron beam radiation damage during focus ion beam milling for transmission electron microscopy sample preparation -- 2.3.4.Electron beam radiation damage during transmission electron microscope analysis -- 2.4.Impact of electron beam radiation damage during TEM failure analysis: radiation damage to silicon nitride -- 2.5.Impact of electron beam radiation damage during TEM FA: boron diffusion and segregation induced phase and microstructure changes in CoFeB material -- 2.5.1.Stage-I: The electron radiation-induced unilateral amorphization of Co3Fe thin film -- 2.5.2.Stage-II: The electron radiation-induced recrystallization in the amorphized Co3Fe thin film -- 2.6.Conclusion -- References -- ch. 3 Failure of intermetallic solder ball due to stress shielding and amplification effects / A.K. Ariffin -- 3.1.Introduction -- 3.2.Methodology -- 3.2.1.Finite element modeling -- 3.3.Results and discussion -- 3.3.1.The effect of distance (B) between two parallel edge cracks -- 3.3.2.Multiple crack analysis---coplanar cracks -- 3.4.Conclusion -- Acknowledgment -- References -- Further reading -- ch. 4 Assessment of failure of consumer electronics due to indoor corrosion in subtropical climates / Rafael Schouwenaars -- 4.1.Introduction -- 42.Methods -- 4.3.Damage analysis -- 4.4.Discussion -- 4.5.Conclusion -- Acknowledgments -- References -- ch. 5 Pb-free solder---microstructural, material reliability, and failure relationships / Richard Coyle -- 5.1.Introduction -- 5.1.1.Development of Pb-free solder alloys -- 5.1.2.Failure and microstructure -- 5.1.3.An overview of the chapter -- 5.2.Case study I---Pb-doped solder alloys -- 5.2.1.Forward compatible mixing -- 5.2.2.Backward compatible mixing -- 5.2.3.Lessons learnt from case study I -- 5.3.Case study II---First- and second-generation Sn---Ag---Cu solder alloys -- 5.3.1.Effect of ball grid array component -- 5.3.2.Effect of Ag content -- 5.3.3.Effect of dwell time -- 5.3.4.Effect of accelerated temperature cycling profile -- 5.3.5.Microstructural evolution and failure mechanisms -- 5.3.6.Lessons learnt from case study II -- 5.4.Case study III---High-performance solders (third generation) -- 5.4.1.Effect of micro-alloying on Sn---Ag---Cu -- 5.4.2.Two commercialized alloys -- 5.4.3.Lessons learnt from case study III -- 5.5.Case study IV---Low-temperature solders -- 5.5.1.Effect of substrate -- 5.5.2.Effect of micro-alloying -- 5.5.3.Lessons learnt from case study IV -- 5.6.Conclusion -- References -- ch. 6 The role of contamination in the failure of electronics---case studies / Jason Wheeler -- 6.1.Introduction -- 6.2.Case studies -- 6.2.1.Example 1---Contamination as a primary cause of motor failures -- 6.2.2.Example 2---Electrolyte contamination -- 6.3.Discussion -- References -- ch. 7 Analytical solutions for electronic assemblies subjected to shock and vibration loadings / Mohammad A. Gharaibeh -- 7.1.Introduction -- 7.2.Test assembly details -- 7.3.Experimental modal analysis -- 7.4.Finite element modeling -- 7.5.Analytical solution details -- 7.5.1.Free vibration -- 7.5.2.Forced vibration: harmonic loading -- 7.5.3.Forced vibration: shock loading -- 7.6.Results and discussions -- 7.6.1.Free vibration: natural frequencies and mode shapes -- 7.6.2.Forced vibration: harmonic loading -- 7.6.3.Forced vibration: impact loading -- 7.7.Conclusion -- Nomenclature -- References -- ch. 8 Stress analysis of stretchable conductive polymer for electronics circuit application / Z. Samsudin -- 8.1.Introduction -- 8.2.Experimental procedure -- 8.2.1.Sample preparation -- 8.2.2.Printing process of circuits -- 8.2.3.Universal tensile testing -- 8.3.Stress---strain analysis of substrate and conductive ink -- 8.3.1.Neo-Hookean model -- 8.3.2.Multilinear plastic model -- 8.4.Finite element analysis -- 8.4.1.Modeling and meshing of different printing shapes models -- 8.4.2.Boundary conditions -- 8.4.3.Analysis using the simulation -- 8.5.Results and discussion -- 8.5.1.Material properties of stretchable electronic circuit material -- 8.5.2.Deformation behavior of stretchable electronics circuit -- 8.5.3.Equivalent stress analysis of a thermal sensor circuit design up to 10% strain -- 8.5.4.Effect of width in reducing the equivalent stress in a thermal sensor circuit -- 8.5.5.Equivalent stress limitation when the load is applied up to 10% strain -- 8.6.Future recommendations -- 8.7.Conclusion -- Acknowledgments -- References -- ch. 9 New methodology for qualification, prediction, and lifetime assessment of electronic systems / Bey Temsamani Abdellatif -- 9.1.Introduction -- 9.2.Improved reliability assessment method -- 9.2.1.Prediction handbooks -- 9.2.2.Life data analysis -- 9.2.3.Accelerated life testing -- 9.2.4.Improved reliability estimation methods -- 9.2.5.Prediction handbooks: FIDES rather than MIL-217F -- 9.2.6.Intelligent life data analysis rather than real life data averaging -- 9.2.7.[HALT + ALT] rather than ALT -- 9.2.8.Reliability block diagram tools and fault tree analysis for complex systems -- 9.3.Application examples -- 9.3.1.Electrolytic capacitors reliability analysis -- 9.3.2.Demonstration of the combined methodology on front light module -- 9.3.3.Supercapacitors reliability analysis -- 9.4.New trends to improve reliability analysis -- 9.4.1.Mission profile -- 9.4.2.Online condition monitoring---case study -- 9.5.Summary -- 9.6.General observations and conclusion -- Acknowledgments -- References -- pt. 2 Textiles industries -- ch. 10 Failure of yarns in different textile applications / Radostina A. Angelova -- 10.1.Introduction -- 10.2.Staple yarn failure depending on the spinning method -- 10.3.Yarn failure depending on the gauge length -- 10.4.Yam failure depending on the strain rate -- 10.5.Modeling of the yarn failure -- 10.6.Yam failure in fabrics and composite structures -- 10.6.1.Yarn failure in fabrics -- 10.6.2.Yarn failure in composite structures -- 10.6.3.High-strength yam failure -- 10.6.4.Failure of yarns from brittle high-performance fibers -- 10.6.5.Carbon nanotubes yam failure -- 10.6.6.Yarn failure in electronic textiles -- 10.7.Conclusion and future trends -- References -- ch. 11 Textile failure analysis and mechanical characterization using acoustic emission technique / Carlos Rolando Rios-Soberanis -- 11.1.Introduction -- 11.1.1.Textiles architecture -- 11.1.2.Textiles-reinforced composites -- 11.1.3.Acoustic emission technique -- 11.1.4.Textiles mechanical and damage characterization -- 11.2.Conclusion -- 11.3.Future trends -- References -- Further reading -- ch. 12 Treatment effect on failure mode of industrial carbon textile at elevated temperature / Emmanuel Ferrier -- 12.1.Introduction -- 12.2.Experimental work -- 12.2.1.Equipment used -- 12.2.2.Specimens -- 12.2.3.Loading paths -- 12.3.Results -- 12.3.1.Elevated temperature behavior of industrial textiles -- 12.3.2.Evolution of the thermomechanical properties as a function of temperature -- 12.3.3.Discussion -- 12.4.Conclusions -- 12.5.Future trends -- References.
- Subject(s)
- Genre(s)
- ISBN
- 9780128113967 (electronic bk.)
0128113960 (electronic bk.)
9780081019375
0081019378 - Note
- Includes index.
View MARC record | catkey: 29248341