Matching minors in bipartite graphs
- Author:
- Wiederrecht, Sebastian
- Published:
- Berlin Universitätsverlag der Technischen Universität Berlin 2022
- Physical Description:
- 1 electronic resource (476 p.)
Access Online
- library.oapen.org , Open Access: OAPEN Library, download the publication
- library.oapen.org , Open Access: OAPEN Library: description of the publication
- Language Note:
- English
- Restrictions on Access:
- Open Access Unrestricted online access
- Summary:
- In this thesis we adapt fundamental parts of the Graph Minors series of Robertson and Seymour for the study of matching minors and investigate a connection to the study of directed graphs. We develope matching theoretic to established results of graph minor theory: We characterise the existence of a cross over a conformal cycle by means of a topological property. Furthermore, we develope a theory for perfect matching width, a width parameter for graphs with perfect matchings introduced by Norin. here we show that the disjoint alternating paths problem can be solved in polynomial time on graphs of bounded width. Moreover, we show that every bipartite graph with high perfect matching width must contain a large grid as a matching minor. Finally, we prove an analogue of the we known Flat Wall theorem and provide a qualitative description of all bipartite graphs which exclude a fixed matching minor.
- Subject(s):
- Other Subject(s):
- ISBN:
- 9783798332522
depositonce-14958 - Collection:
- OAPEN Library.
- Terms of Use and Reproduction:
- Creative Commons https://creativecommons.org/licenses/by/4.0/
View MARC record | catkey: 38364323