Water Quality Instrumentation : Principles and Practice
- Author
- Federation, Water Environment
- Additional Titles
- Water Quality Instrumentation
- Published
- Chicago : Water Environment Federation, 2022.
- Copyright Date
- ©2022
- Physical Description
- 1 online resource (472 pages)
Access Online
- Contents
- Front Cover -- Title Page -- Copyright -- About WEF -- Contents -- List of Figures -- List of Tables -- Preface -- 1.0 References -- Chapter 1: Introduction -- 1.0 Definitions -- 2.0 The Elemental Truth -- 3.0 Molecules and Ions -- 4.0 Chemistry Reactions -- 5.0 Chemical Recipes -- 6.0 What Makes Chemistry "Go?" -- 7.0 References -- Chapter 2: Oxidation-Reduction Potential -- 1.0 Why Start with Oxidation-Reduction Potential? -- 2.0 What ORP Means -- 3.0 The Electrochemical Cell-Two Halves Make a Whole -- 4.0 What Really Happens at the Electrode -- 5.0 The Hydrogen Convention -- 6.0 The Nernst Equation -- 7.0 Construction of an ORP Sensor -- 7.1 The ORP Sensor on Paper -- 7.2 Constructing an Actual ORP Sensor -- 7.3 The Combination ORP Probe -- 7.4 The Differential Probe -- 8.0 Calibration and Mechanics -- 8.1 Why Calibration Is a One-Point Exercise -- 8.2 A Question of Accuracy -- 8.3 Why ORP Measurements Are Usually Very Slow -- 8.4 Why pH Measurements Are Temperature Compensated but ORP Measurements Are Not -- 9.0 The Connection Between pH and ORP? -- 10.0 ORP Applications -- 10.1 ORP to Monitor Disinfection -- 10.2 Monitoring Nitrification and Denitrification -- 10.3 Phosphorus Removal -- 10.4 Sulfide Removal -- 10.5 Methane Production -- 10.6 Redox Titration for Precise Measurement -- 10.7 Cyanide Destruction -- 10.8 Protection Against Corrosion -- 10.9 The Final Word -- 11.0 References -- Chapter 3: pH -- 1.0 The King of Sensors that is Misunderstood -- 2.0 Why a Proton Changes Everything -- 3.0 How a pH Probe Works -- 3.1 The Secret Ingredient of a pH Probe -- 3.2 The Connection Between the Nernst Equation and the pH Probe -- 3.3 Making the Nernst Equation Fit a Proton -- 3.4 Channeling the Inner Potential -- 3.5 Adapting to a Differential Probe -- 4.0 Revisiting Sensor Types -- 4.1 Separate Electrodes -- 4.2 The pH Combination Probe., 4.3 The Differential pH Probe -- 5.0 Calibration -- 5.1 Two Points (or More) -- 5.2 Why Calibration Should Be Done at the Same Temperature as the Process -- 6.0 Things that Affect pH Measurement -- 6.1 It's the Activity, Not the Concentration -- 6.2 Temperature Compensation -- 6.3 A Temperature Effect That Is Real -- 6.4 Buffer Solutions -- 6.5 The Diffusion Potential at the Liquid Junction -- 6.6 The Ever-Changing Reference Electrode -- 6.7 The Process Electrode in Harm's Way -- 6.8 Diagnosing a Probe -- 7.0 The Curse of the Dreaded Ground Loop -- 7.1 The Key Word Is Loop -- 7.1.1 Induction -- 7.1.2 Common Mode Impedance Coupling -- 7.1.3 What to Do About Ground Loops -- 7.2 Further Abuse by Static Charge -- 7.3 Acid and Alkaline Error -- 7.4 Hydrofluoric Acid -- 7.5 The pH of Mixed Solvents -- 7.6 Summary of Probe Issues -- 8.0 Real World Applications for pH Measurement -- 8.1 Water Treatment -- 8.2 Municipal Wastewater Treatment -- 8.3 Acid Mine Remediation -- 8.4 Corrosion -- 8.5 Metal Precipitation -- 8.6 Industrial Wastewater Treatment -- 8.7 Scaling-The Problem With High pH -- 8.8 Water Softening -- 8.9 Disinfection -- 8.10 Food and Dairy Production -- 8.11 Metal Plating -- 9.0 References -- Chapter 4: Conductivity -- 1.0 What it is and Why it Matters -- 2.0 Let'S Make a Model -- 2.1 Ohm's Law for Aqueous Solutions -- 2.2 From Resistance to Conductance to Conductivity -- 2.3 Conductivity in the Real World of Electrolytes -- 2.4 Relating Ion Properties to Conductivity Values -- 2.5 From Conductivity to Ion Mobility -- 2.6 Salinity-The Third Yardstick -- 2.7 Conductivity Examples -- 2.8 Temperature Dependence -- 3.0 Construction of a Conductivity Sensor -- 3.1 The Two Electrode Sensor -- 3.2 Just What Does the Cell Constant Mean? -- 3.2.1 The Wheatstone Bridge -- 3.2.2 The Analyzer With a Resistance Readout -- 3.2.3 The Reference Resistor., 3.3 The Two-Electrode Analyzer -- 3.4 Linearity and Calibration -- 3.5 Why the Cable Matters -- 3.6 The Four Electrode Sensor -- 3.7 The Toroidal Conductivity Sensor -- 4.0 Real World Applications -- 4.1 Water Purity -- 4.2 Pure Water -- 4.3 Cooling Towers -- 4.4 Boiler Feedwater -- 4.5 Chemical Concentration -- 4.6 Conductometric Titration -- 4.7 Leak Detection -- 5.0 References -- Chapter 5: Dissolved Oxygen -- 1.0 Three Parameters that Affect Dissolved Oxygen Concentrations -- 1.1 From Oxygen in the Air to Oxygen in the Water -- 1.2 Variation of Dissolved Oxygen Concentration With Air Pressure and Sea Level -- 1.3 Variation of Dissolved Oxygen Concentration With Temperature -- 1.4 Variation of Dissolved Oxygen With Dissolved Salts -- 1.5 Variation of Dissolved Oxygen With Relative Humidity -- 1.6 A Dissolved Oxygen Sensor Measures Partial Pressure, Not Concentration -- 2.0 The Grand Unified Theory of Electrochemical Sensors -- 3.0 The Dissolved Oxygen Amperometric Probe -- 3.1 The Clark Cell -- 3.2 Variations on the Clark Theme -- 3.3 Galvanic Sensor -- 3.4 The Key Role of Membranes -- 3.5 Temperature and Membranes -- 3.6 Clark or Galvanic? -- 3.7 Interferences -- 4.0 Optical Dissolved Oxygen Sensors -- 4.1 The Weird World of Fluorescence -- 4.2 Ruthenium-The Secret Ingredient -- 4.3 Making a Difficult Measurement Easy -- 4.4 Why Calibration of the Optical Dissolved Oxygen Sensor Is a One-Point Exercise -- 4.5 Comparison Between Electrochemical and Optical Dissolved Oxygen Sensors -- 5.0 Calibration -- 6.0 Dissolved Oxygen Probes in the Real World -- 6.1 Biological Nutrient Removal -- 6.2 BOD Measurement -- 6.3 Boiler Water Deaeration -- 7.0 References -- Chapter 6: Free Chlorine -- 1.0 Hypochlorous Acid and Hypochlorite -- 2.0 Breakpoint Chlorination -- 3.0 The Dpd Analyzer -- 3.1 The Wondrous Wurster Red Dye., 3.2 To Measure Total Chlorine Just Add Iodide (and Starch) -- 3.3 Titration Goes Better With Current Than Color -- 4.0 The Amperometric Chlorine Analyzer -- 4.1 The Two-Electrode Sensor -- 4.2 Total Chlorine -- 4.3 The Potentiostatic (Three-Electrode) Sensor -- 5.0 Interferences and Other Sources of Error -- 6.0 How do ORP Measurements Stack Up Against Free Chlorine Measurements? -- 7.0 Chlorine Alternatives -- 7.1 Chlorine's Achilles Heel -- 7.2 Monochloramine -- 7.3 Chlorine Dioxide -- 7.4 Peracetic Acid -- 7.5 Ozone -- 7.6 UV and Advanced Oxidation Processes -- 8.0 References -- Chapter 7: Turbidity -- 1.0 Solids in the Water -- 2.0 How Light Interacts With Suspended Solids -- 2.1 Photons and Particles -- 2.2 (Particle) Size Matters -- 2.3 Light Scattering -- 3.0 Why Turbidity is in the Eyes of the Beholder (or the Method) -- 4.0 Different Strategies for Quantifying Turbidity -- 4.1 The Secchi Disk -- 4.2 The Jackson Turbidimeter -- 4.3 A Better Way to Measure Scattering -- 4.4 Turbidity Units and Standards -- 5.0 Modern Turbidimeter Design -- 5.1 The Standard Nephelometric Turbidimeter -- 5.2 The Near Infrared Alternative -- 5.3 Sources of Error -- 5.4 The Ratio Turbidimeter -- 5.5 The Four-Beam Turbidimeter -- 5.6 Keeping the Units Straight -- 5.7 The Submersible (or In Situ) Turbidimeter -- 5.8 Other Turbidimeter Designs and Methods -- 6.0 Turbidity in Practice -- 6.1 Drinking Water -- 6.2 Pathogen Detection -- 6.3 Groundwater -- 6.4 Surface Water -- 7.0 TSS Measurements and Turbidity -- 8.0 References -- Chapter 8: Advanced Electrochemical Sensors-ISEs and Voltammetry -- 1.0 Ion Selective Electrodes -- 1.1 Back to the Nernst Equation -- 1.2 Ionic Sites-The Neglected Costars of Potentiometry -- 1.3 It's the Activity, Not the Concentration (Again) -- 1.4 Selectivity-The Lower Limit -- 1.5 Donnan Failure-The Upper Limit., and 1.6 Construction of an Ion Selective Electrode -- 1.7 Glass ISEs -- 1.8 Crystalline (Solid State) ISEs-The Fluoride Sensor -- 1.9 Polymer Membrane ISEs-The Potassium and Ammonia Sensors -- 1.10 Calibration -- 1.11 Measurement-Direct or Incremental -- 2.0 The pH ISFET -- 2.1 Limitations -- 3.0 Voltammetry -- 3.1 Amperometry With a Third Dimension -- 3.2 Linear Sweep Voltammetry -- 3.3 Extracting the Standard Potential and Concentration From Voltammogram -- 3.4 A Real Example -- 3.5 The Voltametric Advantage -- 3.6 Polarography -- 3.7 Variations on a Pulse -- 3.8 Cyclic Voltammetry -- 3.9 Stripping Voltammetry -- 3.10 Rotating Disc Electrode (Hydrodynamic Voltammetry) -- 3.11 Ion Transfer Stripping Voltammetry -- 3.12 Summary and Comparison -- 4.0 References -- Chapter 9: Organic Matter -- 1.0 From Bod to Cod -- 2.0 Toc-Burn and Measure -- 2.1 Making Carbon Dioxide From Carbon Compounds -- 2.1.1 UV Oxidation -- 2.1.2 Supercritical Water Oxidation -- 2.2 Detection of CO2 -- 2.3 Calibration -- 2.4 Surrogate Measurements With UV Absorption -- 3.0 From 254 NM to Beyond-Spectroscopy -- 3.1 The Spectrometer -- 3.2 Spectroscopy of Water -- 3.3 The Spectral Analyzer -- 3.4 Chemometrics to the Rescue -- 4.0 References -- Index.
- ISBN
- 1523147245
9781523147243
1572784199
9781572784192
View MARC record | catkey: 39677258