Actions for Micro electromechanical systems (MEMS) [electronic resource] : practical lab manual
Micro electromechanical systems (MEMS) [electronic resource] : practical lab manual / Sanjeet Kumar, Manish Bhaiyya, Khairunnisa Amreen, Pavar Sai Kumar, Abhishek Kumar ; editor, Sanket Goel
- Author
- Kumar, Sanjeet
- Published
- [Place of publication not identified] : Wiley, 2025.
- Physical Description
- 1 online resource (208 pages)
- Additional Creators
- Bhaiyya, Manish, Amreen, Khairunnisa, Kumar, Pavar Sai, Kumar, Abhishek, and Goel, Sanket
Access Online
- Contents
- About the Editor xv -- List of Contributors xvii -- Preface xxi -- About the Companion Website xxix -- 1 Multiphysics Simulations on the Effect of Fluidic Concentration Profiles Over Y-Channel and T-Channel Designs 1 Pavar Sai Kumar and Sanket Goel -- 1.1 Introduction 1 -- 1.2 Real-Time Applications of This Study 2 -- 1.3 Simulation Section 2 -- 1.3.1 Prerequisites 2 -- 1.3.2 Computer-Aided Designing (CAD) 2 -- 1.3.3 Simulation Parameters 2 -- 1.4 Results and Discussions 3 -- 1.4.1 Model Designing 3 -- 1.4.2 COMSOL Simulations 3 -- 1.5 Conclusion 10 -- References 10 -- 2 Droplet Generation in T-Junction Microchannel Using Multiphysics Software 13 Abhishek Kumar and Sanket Goel -- 2.1 Introduction 13 -- 2.1.1 Brief Overview 14 -- 2.2 Simulation Section 15 -- 2.2.1 Prerequisites 15 -- 2.2.2 Model and Geometry Definition 15 -- 2.2.3 Simulation Parameters 15 -- 2.3 Result and Discussion 17 -- 2.4 Conclusion 17 -- References 18 -- 3 Cleanroom-Assisted and Cleanroom-Free Photolithography 21 Abhishesh Pal, Satish Kumar Dubey, and Sanket Goel -- 3.1 Introduction 21 -- 3.2 Photolithography Basics, Classification and Applications 22 -- 3.2.1 Cleanroom-Assisted Photolithography 23 -- 3.2.2 Cleanroom-Unassisted Photolithography 23 -- 3.2.3 Cleanroom-Assisted vs. Cleanroom-Unassisted Photolithography 24 -- 3.3 Experimental Section on Designing and Development of Features Using Photolithography 25 -- 3.3.1 Brief Overview 25 -- 3.3.2 Prerequisites 26 -- 3.3.3 Instrumentation and Software 26 -- 3.3.4 Stepwise Photolithography Procedure to Develop a Pattern 26 -- 3.4 Conclusion 26 -- References 27 -- 4 Additive Manufacturing (3D Printing) 29 Pavar Sai Kumar, Abhishek Kumar, and Sanket Goel -- 4.1 Stereolithography (SLA) Printing of Y-Channeled Microfluidic Chip 29 -- 4.1.1 Introduction 29 -- 4.1.2 Real-Time Applications of This Study 30 -- 4.1.3 Designing Section 30 -- 4.1.3.1 Prerequisites 30 -- 4.1.3.2 Software and Instrumentation 30 -- 4.1.3.3 Designing a Y-Channeled Microfluidic Chip 30 -- 4.1.4 3D Printing Section 32 -- 4.1.4.1 Slicing Operations 32 -- 4.1.4.2 Cleaning and Curing Operations 32 -- 4.1.5 Conclusion 34 -- 4.2 Fused Deposition Modeling (FDM): Fabrication of Single Electrode Electrochemiluminescence Device 34 -- 4.2.1 Introduction 34 -- 4.2.1.1 Brief Overview 36 -- 4.2.2 Designing Section 36 -- 4.2.2.1 Prerequisites 36 -- 4.2.2.2 Software and Instrumentation 36 -- 4.2.2.3 Fabrication Step 36 -- 4.2.3 Conclusion 37 -- References 37 -- 5 Laser Processing 41 Pavar Sai Kumar, Abhishek Kumar, Manish Bhaiyya, and Sanket Goel -- 5.1 CO 2 Laser for Electrochemical Sensor Fabrication 41 -- 5.1.1 Introduction 41 -- 5.1.2 Real-Time Applications of This Study 42 -- 5.1.3 Brief Overview 43 -- 5.1.4 Experimental Section 43 -- 5.1.4.1 Prerequisites 43 -- 5.1.4.2 Materials, Instrumentation, and Software 43 -- 5.1.4.3 Fabrication Steps 43 -- 5.1.5 Conclusion 44 -- 5.2 One-Step Production of Reduced Graphene Oxide from Paper via 450 nm Laser Ablations 45 -- 5.2.1 Introduction 45 -- 5.2.2 Experimentation 45 -- 5.2.2.1 Prerequisites 45 -- 5.2.2.2 Instrumentation and Software 45 -- 5.2.2.3 Design File Generations 46 -- 5.2.3 Production of rGO Patterns 48 -- 5.3 Conclusion 50 -- References 50 -- 6 Soft Lithography: DLW-Based Microfluidic Device Fabrication 53 K. Ramya and Sanket Goel -- 6.1 Introduction 53 -- 6.2 Designing Section 54 -- 6.2.1 Prerequisites 54 -- 6.2.2 Instrumentation and Software 54 -- 6.2.3 Step-by-Step Procedure for DLW-Soft Lithography Microfluidic Device Design 54 -- 6.3 Conclusion 57 -- References 57 -- 7 Electrode Fabrication Techniques 59 Sanjeet Kumar, Abhishek Kumar, K.S. Deepak, Manish Bhaiyya, Aniket Balapure, Satish Kumar Dubey, and Sanket Goel -- 7.1 Inkjet Printing Technique: Electrode Fabrication for Advanced Applications 59 -- 7.1.1 Introduction 59 -- 7.1.2 Designing Section 60 -- 7.1.2.1 Prerequisites 60 -- 7.1.2.2 Instrument and Equipment Required 60 -- 7.1.2.3 Designing a Microelectrode Device 61 -- 7.1.3 Dip Trace and Voltera V-One Microfabrication Section 61 -- 7.1.3.1 Gerber Format File Generation 61 -- 7.1.3.2 Voltera V-One Software 61 -- 7.1.4 Conclusion 61 -- 7.2 Screen Printing Technique for Electrochemical Sensor Fabrication 62 -- 7.2.1 Introduction 62 -- 7.2.2 Brief Overview 65 -- 7.2.3 Experimental Section 65 -- 7.2.3.1 Prerequisites 65 -- 7.2.3.2 Materials, Instrumentation, and Software 65 -- 7.2.3.3 Fabrication Steps 65 -- 7.2.4 Conclusion 66 -- 7.3 Physical Vapor Deposition (PVD) Technique for Electrode Fabrication 66 -- 7.3.1 Introduction 66 -- 7.3.1.1 Physical Vapor Deposition (PVD) 66 -- 7.3.1.2 Gold Electrodes as Biosensors 67 -- 7.3.2 Experimental Details 67 -- 7.3.2.1 Instrument and Equipment Required 67 -- 7.3.2.2 Equipment Setup 67 -- 7.3.2.3 Substrate Preparation 67 -- 7.3.2.4 Deposition Process 68 -- 7.3.2.5 Electrode Fabrication 68 -- 7.3.3 Precautions 69 -- 7.4 Conclusion 69 -- References 69 -- 8 Morphological Characterization 71 Dhoni Nagaraj, Yuvraj Maphrio Mao, Parvathy Nair, Sanjeet Kumar, Imran Khan, Amreen Khairunnisa, R.N. Ponnalagu, Satish Kumar Dubey, and Sanket Goel -- 8.1 Morphological Studies with Different Techniques 71 -- 8.1.1 Introduction 71 -- 8.2 Scanning Electron Microscopy 71 -- 8.3 Steps Involved in the Scanning Electron Microscope Characterization 72 -- 8.3.1 Brief Overview 72 -- 8.3.2 Sample Preparation 72 -- 8.3.3 Instrumentation 73 -- 8.3.4 Results and Conclusion 73 -- 8.4 X-Ray Diffraction (XRD) 74 -- 8.4.1 Introduction 74 -- 8.4.2 XRD Setup 76 -- 8.4.3 Sample Preparations and Methodology 77 -- 8.4.3.1 Brief Overview 77 -- 8.4.4 Steps Involved in Sample Preparation 77 -- 8.4.5 Instrument Setup 77 -- 8.4.6 Data Collection 77 -- 8.4.7 Data Analysis 78 -- 8.4.8 Crystal Structure Determination (if Necessary) 78 -- 8.4.9 Data Interpretation 78 -- 8.4.10 Conclusion 78 -- 8.5 Optical LED Microscope 79 -- 8.5.1 Introduction 79 -- 8.5.2 Sample Preparation 79 -- 8.5.2.1 Prerequisites 79 -- 8.5.3 Brief Overview 79 -- 8.5.4 Principle of Optical Microscope 80 -- 8.5.5 Sample Preparation and Instrumentation Setup 81 -- 8.5.6 Conclusion 82 -- 8.6 Contact Angle 83 -- 8.6.1 Introduction 83 -- 8.6.2 Setup Specifications 84 -- 8.6.3 Biolin Scientific Theta Lite - Optical Tensiometer 85 -- 8.6.4 Sample Preparations and Methodology 85 -- 8.6.4.1 Brief Overview 85 -- 8.6.5 Protocols to Be Followed While Operating the Instrument 86 -- 8.6.6 Conclusions 87 -- References 87 -- 9 Spectroscopic Characterization 89 Himanshi Awasthi, N.K. Nishchitha, Sonal Fande, and Sanket Goel -- 9.1 Introduction 89 -- 9.2 Ultraviolet-Visible (UV-Vis) Spectrophotometers 90 -- 9.2.1 Steps Involved 90 -- 9.2.2 Conclusion 91 -- 9.3 X-Ray Photoelectron Spectroscopy (XPS) 92 -- 9.3.1 Fundamentals of XPS 92 -- 9.3.1.1 XPS Instruments Have the Following Components 92 -- 9.3.2 Sample Preparation Steps 93 -- 9.3.2.1 Sample Mounting 93 -- 9.3.3 Experimental Procedure 93 -- 9.3.3.1 Detailed Instructions 94 -- 9.3.4 Conclusion 96 -- 9.4 Raman Spectroscopy 97 -- 9.4.1 Sample Preparation 97 -- 9.4.1.1 Prerequisites 97 -- 9.4.2 Experimental Procedure 97 -- 9.4.2.1 Instrumentation Configuration 98 -- 9.4.2.2 Specific Intensity Ranges 98 -- 9.4.2.3 Sample Preparation 98 -- 9.4.2.4 Laser Targeting 98 -- 9.4.2.5 Measurement of the Baseline 98 -- 9.4.2.6 Subtraction of Dark Signals 98 -- 9.4.2.7 Spectrum Calibration 99 -- 9.4.2.8 Raman Scanning 99 -- 9.4.2.9 Data Analysis 99 -- 9.4.2.10 Data Interpretation 99 -- 9.4.2.11 Data Representation 99 -- 9.4.2.12 Cleansing 99 -- 9.4.3 Results 99 -- 9.5 Fourier Transform Infrared (FTIR) Spectroscopy 100 -- 9.5.1 Brief Overview 100 -- 9.5.2 Sampling Techniques in FTIR 100 -- 9.5.3 Sample Preparation 101 -- 9.5.3.1 Solid Samples (Powders and Thin Films) 101 -- 9.5.3.2 Liquid Samples 102 -- 9.5.3.3 Gaseous Sample 102 -- 9.5.4 Interpretation of FTIR 102 -- 9.5.5 Conclusion 103 -- References 104 -- 10 Microfluidic Devices 105 Abhishesh Pal, Pavar Sai Kumar, Sreerama Amrutha Lahari, Sonal Fande, Abhishek Kumar, Manish Bhaiyya, Sohan Dudala, R.N. Ponnalagu, Satish Kumar Dubey, and Sanket Goel -- 10.1 Electrochemical Detection of Bacteria, Biomarkers, Biochemical, and Environmental Pollutants 105 -- 10.1.1 Introduction 105 -- 10.1.2 Experimental Section for Detection of Bacteria (Escherichia coli (E. and coli)) 106 -- 10.1.2.1 Brief Overview 106 -- 10.1.2.2 Prerequisites 107 -- 10.1.2.3 Chemicals and Equipment 107 -- 10.1.2.4 Procedure 107 -- 10.1.3 Experimental Section for Detection of Biomarkers (Lactate) 108 -- 10.1.3.1 Brief Overview 108 -- 10.1.3.2 Prerequisites 108 -- 10.1.3.3 Chemicals and Equipment 108 -- 10.1.3.4 Procedure 109 -- 10.1.4 Experimental Section for Detection of Biochemical Analyte 111 -- 10.1.4.1 Brief Overview 111 -- 10.1.4.2 Prerequisites 111 -- 10.1.4.3 Procedure 111 -- 10.1.4.4 Discussion 112 -- 10.1.5 Experimental Section for Detection of Environmental Pollutants 113 -- 10.1.5.1 Brief Overview 113 -- 10.1.5.2 Prerequisites 113 -- 10.1.5.3 Procedure 113 -- 10.1.6 Conclusio ...
- Summary
- Practical lab manual on the stepwise description of the experimental procedures of micro electromechanical systems (MEMS) devices Micro Electromechanical Systems (MEMS) is a highly practical lab manual on the relevant experimental procedures of MEMS devices, covering technical aspects including simulations and modeling, practical steps involved in fabrication, thorough characterizations of developed MEMS sensors, and leveraging these sensors in real-time targeted applications. The book provides in-depth coverage of multi-physics modeling for various sensors, as well as fabrication methodologies for photolithography, soft lithography, 3D printing, and laser processing-based experimental details for the realization of MEMS devices. It also covers characterization techniques from morphological to compositional, and applications of MEMS devices in contemporary fields such as microfluidics, wearables, and energy harvesters. The text also includes a foundational introduction to the subject. The book covers additional topics such as: Basic fluid flow and heat transfer in microfabrication, Y and T channel mixing, and simulation processes for Droplet generation Simulations based on cyclic voltammetry and electrochemical impedance spectroscopy, screen and ink-jet printing, laser-induced graphene, reduced graphene oxide, and 3D printing X-ray diffraction, scanning electron microscopy, optical microscopy, Raman spectroscopy, energy dispersive spectroscopy, and Fourier Transform Infrared (FTIR) Spectroscopy Experimental stepwise details to enable students to perform the experiments in the practical laboratory and future outlooks on the direction of the field A practical guidebook on the subject, Micro Electromechanical Systems (MEMS) is a must-have resource for students, academicians, and lab technicians seeking to conduct experiments in real-time.
- Subject(s)
- ISBN
- 9781394229840
1394229844
9781394229864 (electronic bk.)
1394229860 (electronic bk.)
9781394229857 (electronic bk.)
1394229852 (electronic bk.)
1394229836
9781394229833 - Audience Notes
- Professional and scholarly.
- Note
- Electronic book.
View MARC record | catkey: 47061989