Advances in regenerative medicine [electronic resource] : role of nanotechnology and engineering principles : proceedings of the NATO Advanced Research Workshop on Nanoengineered Systems for Regenerative Medicine Varna, Bulgaria 21-24 September 2007 / edited by Venkatram Prasad Shastri, George Altankov, Andreas Lendlein
- Conference Author
- NATO Advanced Research Workshop on Nanoengineered Systems for Regenerative Medicine (2007 : Varna, Bulgaria)
- Published
- Dordrecht ; London : Springer, 2010.
- Physical Description
- 1 online resource
- Additional Creators
- Shastri, V. Prasad, Altankov, George, and Lendlein, Andreas
Access Online
- SpringerLink: ezaccess.libraries.psu.edu
- Series
- Contents
- Machine generated contents note: 1.Cell Adhesions and Signaling: A Tool for Biocompatibility Assessment -- 1.1.Introduction -- 1.2.Cell-Matrix Adhesions -- 1.2.1.Integrin Receptors and Integrin Cytoplasmic Complexes -- 1.2.2.Focal Adhesions -- 1.2.3.Fibrillar Adhesions -- 1.2.4.Three-Dimensional Matrix Adhesions -- 1.2.5.Dynamics of Cell Adhesions -- 1.3.Concluding Remarks -- References -- 2.Development of Provisional Extracellular Matrix on Biomaterials Interface: Lessons from in Vitro Cell Culture -- 2.1.Introduction -- 2.2.Initial Cell-Materials Interaction -- 2.2.1.Development of Focal Adhesion Complex -- 2.2.2.Substratum Properties Affect Focal Adhesions Formation -- 2.3.Development of Provisional Extracellular Matrix at the Biomaterials Interface -- 2.3.1.Development of Early Matrix -- 2.3.2.Development of Late Fibronectin Matrix -- 2.4.Integrin Receptors Dynamics and Provisional Extracellular Matrix Formation -- 2.4.1.Studies on Integrin Dynamics -- 2.4.2.Integrin Dynamics Depend on Substratum Properties -- 2.5.Development of Extracellular Matrix at "Real" Biomaterials Interface -- 2.5.1.Effects of Substratum Chemistry on Matrix Formation: A View of Biosensors Application -- 2.5.2.Development of Extracellular Matrix on Biomimetic Hydroxyaptite Cements Surfaces -- 2.5.3.Development of Extracellular Matrix on Different Rough Titanium Surfaces -- References -- 3.Endothelial Progenitor Cells for Tissue Engineering and Tissue Regeneration -- 3.1.Introduction -- 3.2.Vascular Networks for TE Constructs -- 3.3.Sources of Human Endothelial Cells for TE Vascular Networks -- 3.3.1.Mature Vessel-Derived Endothelial Cells -- 3.3.2.Human Embryonic Stem Cells -- 3.3.3.Blood-Derived EPCs -- 3.3.4.Bone Marrow-Derived Cells for Tissue Vascularization -- 3.4.Blood-Derived EPCs for Creating Vascular Networks -- 3.4.1.Isolation and Culture of Human EPCs and HSVSMCs -- 3.4.2.In Vivo Assay for Vascularization -- 3.4.3.Summary: Vasculogenic Potential of Human EPCs -- References -- 4.Dermal Precursors and the Origins of the Wound Fibroblast -- 4.1.Introduction -- 4.2.Mesenchymal Stem Cells -- 4.2.1.Marrow Derived Fibroblast Populations -- 4.2.2.Fibrocytes -- 4.2.3.Factors for Mobilization and Recruitment of Marrow Populations -- 4.3.Defining the Dermal Fibroblast -- 4.3.1.Dermal Progenitors -- 4.3.2.Evidence for Progenitor Populations -- 4.4.Clinical Applications -- 4.5.Novel Healing Properties of MSC -- 4.6.Summary -- References -- 5.Cell Based Therapies: What Do We Learn from Periosteal Osteochondrogenesis? -- 5.1.General Introduction -- 5.1.1.Cell Based Therapies -- 5.2.Periosteum -- 5.2.1.Embryological Development of Bone, Cartilage, and Periosteum -- 5.2.2.Periosteum in Bone and Cartilage Repair -- 5.3.Differential Survival of Periosteal Progenitor Cells Versus Chondrocytes -- 5.3.1.Introduction -- 5.3.2.Cell Labeling and Scaffolds -- 5.3.3.Chondrocytes Survive Transplantation Better than Periosteal Progenitor -- 5.3.4.Hyaluronan Increases the Number of Viable Periosteal Progenitors -- 5.3.5.Discussion -- 5.4.A Model to Study Periosteal Osteochondrogenesis In Vivo -- 5.4.1.Introduction -- 5.4.2.Periosteal Callus Recapitulates the Sequential Steps of Endochondral Bone Formation -- 5.4.3.HIF-1 α Activation and BMP Expression -- 5.4.4.Periostin Activation During Periosteal Callus Formation -- 5.5.Repair of Osteochondral Defects with Cartilage from Periosteum -- 5.5.1.Introduction -- 5.5.2.Improved Repair of Osteochondral Defects -- 5.5.3.Discussion -- 5.6.Evidence That Endochondral Bone Formation Can Be Manipulated in the IVB -- 5.6.1.Introduction -- 5.6.2.Growth Factors -- 5.6.3.Hypoxia -- 5.6.4.Calcium -- 5.7.Discussion -- References -- 6.Bioreactor Systems in Regenerative Medicine -- 6.1.Introduction -- 6.2.Bioreactors in Regenerative Medicine: Key Features -- 6.2.1.Cell Seeding on Three-Dimensional Matrices -- 6.2.2.Maintenance of a Controlled Culture Environment -- 6.2.3.Physical Conditioning of Developing Tissues -- 6.2.4.Predicting Mechanical Functionality of Engineered Tissues -- 6.3.Bioreactor-Based Manufacturing of Tissue Engineering Products -- 6.3.1.Automating Conventional Cell Culture Techniques -- 6.3.2.Automating Tissue Culture Processes -- 6.3.3.Streamlining Tissue Engineering Processes -- 6.3.4.Different `Manufacturing' Concepts -- 6.4.Conclusions and Future Perspectives -- References -- 7.Biomimetic Approaches to Design of Tissue Engineering Bioreactors -- 7.1.Introduction -- 7.2.Cardiac Tissue Engineering -- 7.2.1.Myocardium (Cardiac Muscle) -- 7.2.2.Tissue Engineering -- 7.3.Cartilage Tissue Engineering -- 7.3.1.Articular Cartilage -- 7.3.2.Tissue Engineering -- 7.4.Conclusions -- References -- 8.The Nature of the Thermal Transition Influences the Shape-Memory Behavior of Polymer Networks -- 8.1.Introduction -- 8.2.Architectures of Different Polymer Networks -- 8.2.1.Synthesis -- 8.2.2.Thermomechanical Properties -- 8.3.Shape-Memory Capability -- 8.4.Degradation -- 8.5.Summary -- 8.6.Outlook -- References -- 9.Nanoengineered Systems for Regenerative Medicine Surface Engineered Polymeric Biomaterials with Improved Bio-Contact Properties -- 9.1.Introduction -- 9.2.Polymeric Materials with Improved Bio-Contact Properties -- 9.2.1.Strong Hydrophilic "Water-Like" Protein Repellent Surfaces -- 9.2.2.Protein Repelent Plasma Films -- 9.2.3.Polydimetylesiloxane (PDMS) with Improved Interactions with Living Cells -- 9.3.Conclusions -- References -- 10.Nanocomposites for Regenerative Medicine -- 10.1.Perspective -- 10.2.A Nanophase for the Mechanical Reinforcement of Tissue Engineering Scaffolds -- 10.2.1.Introduction -- 10.2.2.Nanocomposite Scaffolds for Hard Tissue Engineering -- 10.2.3.Nanocomposite Scaffolds for Soft Tissue Engineering -- 10.2.4.Conclusion and Future Direction -- 10.3.A Nanophase for Drug Delivery Applications -- 10.3.1.Introduction -- 10.3.2.Nanofibrous and Nanoporous Biomaterials -- 10.4.Conclusions -- References -- 11.Role of Spatial Distribution of Matricellular Cues in Controlling Cell Functions -- 11.1.Introduction -- 11.2.Cell-Matrix Interaction -- 11.2.1.Effect of Matrix on Cell Migration -- 11.2.2.Matrix Effect on Embryonic Development -- 11.2.3.Matrix Effect on Angiogenic Processes -- 11.3.Development of Novel Biofunctional Materials -- 11.4.Conclusions -- References -- 12.Materials Surface Effects on Biological Interactions -- 12.1.Introduction -- 12.1.1.First Generation -- 12.1.2.Second Generation -- 12.1.3.Third Generation -- 12.1.4.Biomaterials for Substitution, Repair and Regeneration -- 12.1.5.Stem Cells Sources -- 12.2.Surface Modification to Improve Cell-Material Interactions -- 12.2.1.Surface Topography -- 12.2.2.Surface Chemistry -- 12.3.Oxidation Treatment of NiTi Shape Memory Alloys to Obtain Ni-Free Surfaces and to Enhance Biocompatibility -- 12.4.Surface Characterisation of Fully Biodegradable Composite Scaffolds for Bone Regeneration -- 12.5.Micro and Nanopatterned Surfaces for Biomedical Applications -- References -- 13.Chemical and Physical Modifications of Biomaterial Surfaces to Control Adhesion of Cells -- 13.1.General Introduction -- 13.1.1.Basics of Cell Adhesion on Material Surfaces -- 13.1.2.Short Overview on Techniques to Modify Surfaces of Biomaterials -- 13.1.3.Methods to Generate Nanostructured Surface -- 13.2.Self Assembled Monolayers Based on Organosiloxanes -- 13.2.1.Background -- 13.2.2.Effect of SAM on Fibroblast Adhesion, Spreading and Growth -- 13.3.Photochemical Immobilization of Polyethylenglycol on Hydrophobic Biomaterials -- 13.3.1.Background -- 13.4.Effect of Photochemical Immobilization of Poly (Ethylene Glycol) on Adhesion of Cells -- 13.5.Application of Layer-by-Layer Technique on Charged Surfaces -- 13.5.1.Background of Layer-by-Layer Technique -- 13.5.2.Application of LbL Technique to Inorganic Surfaces -- 13.5.3.Application of LbL Technique to Poly (L-Lactide) (PLLA) for Tissue Engineering Applications -- 13.6.Summary and Conclusions -- References -- 14.Results of Biocompatibility Testing of Novel, Multifunctional Polymeric Implant Materials In-Vitro and In-Vivo -- 14.1.Introduction -- 14.1.1.Regenerative Medicine -- 14.1.2.Functionalized Implant Materials -- 14.1.3.Clinical Application of Polymer-Based Implant Materials -- 14.2.Materials and Methods -- 14.2.1.Polymer-Based, Biodegradable Implant Materials -- 14.2.2.Sterilization Methods -- 14.2.3.Investigation of In-Vitro Toxicity -- 14.2.4.In-Vivo Assessment of Tissue Compatibility of Biomaterials -- 14.2.5.Animal Model -- 14.2.6.Statistical Evaluation -- 14.3.Results -- 14.3.1.Detailed Evaluation of In-Vitro Biocompatibility Testing -- 14.3.2.In-Vivo Assessment of Tissue Compatibility of Biomaterials -- 14.4.Discussion -- References -- 15.UFOs, Worms, and Surfboards: What Shapes Teach Us About Cell-Material Interactions -- 15.1.Introduction -- 15.2.Particulate Drug Delivery Systems -- 15.2.1.Role of Physical Properties in Particle Function -- 15.3.Phagocytosis -- 15.3.1.Attachment -- 15.3.2.Internalization -- 15.4.Fabrication of Non-spherical Polymer Particles -- 15.4.1.General Method -- 15.4.2.Specific Shapes -- 15.5.Effect of Particle Shape on Phagocytosis -- 15.5.1.Shape Internalization -- 15.5.2.Quantification of Shape -- 15.5.3.Correlation Between Internalization, Shape and Size -- 15.6.Design of Non-spherical Particles for Drug Delivery -- 15.6.1.Optimal Shapes for Avoiding Phagocytosis -- 15.6.2.Fabrication of Non-spherical Biodegradable Drug Carriers -- 15.7.Conclusions and Future Directions -- 15.7.1.Drug Delivery -- 15.7.2.Cell-Material Interactions -- References -- 16.Nano-engineered Thin Films for Cell and Tissue-Contacting Applications -- 16.1.Introduction -- 16.2.Resonant Infrared Pulsed Laser Deposition of Thin Films -- 16.3.Resonant Infrared Laser Ablation of Thermally Labile Polymers -- 16.3.1.Poly(Ethylene Glycol) - PEG -- 16.3.2.Poly(DL-Lactide-Co-Glycolide) - PLGA -- 16.3.3.Proteins and Nucleic Acids -- 16.3.4.Poly(Tetrafluoroethylene) -- and Contents note continued: 16.4.Deposition of Functional Nanoparticles -- 16.5.Discussion and Conclusions -- 16.5.1.Evidence for Low-Temperature Character of RIR-PLD -- 16.5.2.The RIR-PLD Mechanism and Its Consequences -- 16.5.3.Prospects for Table-Top RIR-PLD Laser Technology -- 16.6.Conclusions -- References -- 17.Injectable Hydrogels: From Basics to Nanotechnological Features and Potential Advances -- 17.1.Introduction -- 17.1.1.The Concept of Scaffold -- 17.2.Hydrogels -- 17.2.1.Methods of Preparation -- 17.3.Properties Exploitable in Tissue Engineering -- 17.4.Major Issues of Injectable Materials in Tissue Engineering -- 17.5.Conclusions -- References -- 18.Polyelectrolyte Complexes as Smart Nanoengineered Systems for Biotechnology and Gene Delivery -- 18.1.Introduction -- 18.2.Complex Formation and Competitive Reactions in Solutions of Oppositely Charged Polyelectrolytes -- 18.2.1.Polyelectrolyte Complexes and Their Properties -- 18.3.DNA-Containing PECs and Their Properties -- 18.3.1.Stability of DNA-Containing Complexes -- 18.3.2.Selectivity of Competitive Reactions in DNA Solutions -- 18.3.3.Complexing of DNA with Polycations for Cell Transfection -- 18.4.Complexes of Proteins with Oppositely Charged Polyions -- 18.4.1.Soluble Complexes and Competitive Reactions in Their Solutions -- 18.4.2.Artificial Chaperones -- 18.5.Polyelectrolyte Multilayer Films and Capsules.
- Subject(s)
- ISBN
- 9789048187904
9048187907 - Note
- AVAILABLE ONLINE TO AUTHORIZED PSU USERS.
View MARC record | catkey: 6429526