Actions for Actin-based motility [electronic resource] : cellular, molecular and physical aspects
Actin-based motility [electronic resource] : cellular, molecular and physical aspects / Marie-France Carlier, editor
- Published
- Dordrecht ; New York : Springer, [2010]
- Copyright Date
- ©2010
- Physical Description
- 1 online resource (xii, 435 pages) : illustrations (some color)
- Additional Creators
- Carlier, Marie-France
Access Online
- SpringerLink: ezaccess.libraries.psu.edu
- Contents
- Machine generated contents note: pt. I Cellular Aspects -- 1.Elementary Cellular Processes Driven by Actin Assembly: Lamellipodia and Filopodia / Klemens Rottner -- 1.1.Introduction -- 1.2.Choosing Your Protrusion -- 1.3.Signalling to Lamellipodia and Filopodia: Rho-GTPases and Beyond -- 1.4.Organization of the Pushing Machinery in Lamellipodia -- 1.5.Actin Nucleators and Elongators in Lamellipodia -- 1.6.Determinants of Actin Turnover in Lamellipodia -- 1.7.Determinants of Filopodia Formation -- 1.8.Actin Filament Recycling: From Protrusion to Retraction -- 1.9.Moving Forward -- References -- 2.Coupling Membrane Dynamics to Actin Polymerization / Tadaomi Takenawa -- 2.1.Introduction -- 2.2.A Variety of Plasma Membrane Invaginations -- 2.3.Membrane Deformation by the BAR and EFC/F-BAR Domains -- 2.4.The BAR and EFC/F-BAR Domain-Containing Proteins are Connected to the actin Cytoskeleton Through N-WASP -- 2.5.IMD/I-Bar Domain Induces Outward Protrusions -- 2.6.Direction of Actin Polymerization Beneath the Membrane -- 2.7.Membrane Curvature-Dependent Actin Polymerization -- 2.8.Conclusions: Activation of Signal Transduction Cascades / Membrane Curvature -- References -- 3.Endocytic Control of Actin-based Motility / Giorgio Scita -- 4.Actin in Clathrin-Mediated Endocytosis / Marko Kaksonen -- 4.1.Actin and Endocytosis in Yeast -- 4.1.1.Stages of Yeast Endocytosis -- 4.1.2.Visualizing Actin in Yeast Endocytosis -- 4.1.3.Regulation of Actin Polymerization at Yeast Endocytic Sites -- 4.1.4.Layers of Activation and Inhibition of Actin Polymerization -- 4.1.5.Further Links Between the Membrane and the Actin Cytoskeleton -- 4.2.Actin and Clathrin-Mediated Endocytosis in Mammals -- 4.2.1.Actin Dynamics in Living Mammalian Cells -- 4.2.2.Regulation of Actin Polymerization at Endocytic Sites -- 4.2.3.Multiple Roles of Actin at the Plasma Membrane -- 4.3.Open Questions in Actin-Mediated Endocytosis -- References -- 5.Actin Cytoskeleton and the Dynamics of Immunological Synapse / Michael L. Dustin -- 5.1.Introduction -- 5.2.TCR Signaling, Adhesion and the Actin Cytoskeleton -- 5.2.1.Overview of TCR Signaling -- 5.2.2.Actin-Remodeling and-Binding Proteins Involved in TCR Signaling -- 5.2.3.Role of Actin Cytoskeleton in Integrin-Mediated Adhesion Upon TCR Engagement -- 5.3.Immunological Synapse -- 5.3.1.Organization of a Stable IS -- 5.3.2.Peripheral TCR Microclusters are Involved in Sustained TCR Signaling -- 5.3.3.SMACs Correspond to Modules of the Motility Apparatus -- 5.4.Immunological Kinapse -- 5.4.1.T Cell Activation Occurs Even in the Absence of a Stable IS -- 5.4.2.Immunological Kinapse is a Mobile and Asymmetric Counterpart to IS -- 5.5.Role and Significance of Immunological Synapse and Kinapse -- 5.5.1.Directed Secretion -- 5.5.2.Assymetric Cell Division -- 5.5.3.Balance Between IS and IK in Tuning Immune Responses -- 5.6.Issues and Considerations -- 5.6.1.TCR Triggering and Clustering -- 5.6.2.Diversity in IS -- 5.6.3.Symmetry Breaking of IS -- 5.6.4.Balance Between IS and IK -- References -- 6.Actin-based Motile Processes in Tumor Cell Invasion / John Condeelis -- 6.1.Introduction -- 6.2.Chemotaxis -- 6.3.Lamellipodia -- 6.4.Invadopodia -- 6.4.1.Invadopodium Maturation Requires Action Polymerization -- 6.4.2.Regulation of Actin Polymerization in Invadopodia -- 6.4.3.The Stages of Invadopodium Maturation -- 6.4.4.Function and Regulation of Cofllin During Invadopodium Maturation -- 6.4.5.Pathways Leading to Activation of the Arp2/3 Complex During Invadopodium Maturation -- 6.5.Formin-Dependent Actin Nucleation During Tumor Cell Invasion -- 6.6.Nonmuscle Myosin II and Contractile Force Regulation During Tumor Cell Invasion -- 6.7.Coordination of Pathways Linking Actin Polymerization to the Matrix Degradation Activity of Invadopodia -- 6.8.The Relative Contribution of Chemotaxis, Invadopodium Formation, and Lamellipodium Formation to the Invasive Tumor Cell Phenotype In Vivo -- References -- 7.Actin-based Chromosome Movements in Cell Division / Rong Li -- 7.1.Introduction -- 7.2.Actin-Driven Chromosomal Movement During Meiosis I in Mouse Oocytes -- 7.2.1.Meiotic Chromosome Migration as a Key Step in Cellular Symmetry Breaking -- 7.2.2.Early Evidence That Actin Powers Meiotic Chromosome Migration in Mouse Oocytes -- 7.2.3.Pushing or Pulling-How Does Actin Move Chromosomes? -- 7.2.4.Questions Ahead -- 7.3.Interactions Between Actin and Chromatin to Establish the Site for Polar Body Extrusion -- 7.3.1.Chromatin-Induced Assembly of Cortical Actin and Myosin-II for Polar Body Extrusion -- 7.3.2.The Ran-GTP Gradient: the Oocyte's Tape Measure for Polar Body Extrusion? -- 7.3.3.How Might Ran Regulate the Assembly of Cortical Actin and Myosin? -- 7.4.Does Actin Have a Hand in the Spindle? -- 7.5.Perspectives -- References -- 8.Roles for Actin Dynamics in Cell Movements During Development / Bob Goldstein -- 8.1.Movements of Cell Sheets During Morphogenesis -- 8.1.1.C. elegans Ventral Enclosure - Closing Both Ends -- 8.1.2.Drosophila Dorsal Closure - Multiple Actin-based Forces Contribute to a Single Morphogenetic Process -- 8.1.3.Neural Crest Cell Migration - Delamination and then Cell Contact-Dependent Migratory Behaviours Position Cells -- 8.2.Single Cell Migration During Morphogenesis -- 8.2.1.Zebrafish Primordial Germ Cell Migration - Single Cells Come Together to Form Cell Clusters and Migrate Together to Their Final Destination -- 8.2.2.C. elegans Axon Guidance - Using a Genetic System to Identify Proteins Required for Single Cell Migration In Vivo -- 8.3.Conclusions -- 8.3.1.Collective Cell Migration -- 8.3.2.Single Cell Migration - Amoeboid Versus Mesenchymal Migration -- 8.3.3.What Can We Learn About Actin Dynamics in a Model Developmental System? -- References -- pt. II Molecular Aspects -- 9.Regulation of the Cytoplasmic Actin Monomer Pool in Actin-based Motility / Hongxia Zhao -- 9.1.Introduction -- 9.2.Actin Filament Disassembly -- 9.2.1.ADF/Cofilin Family Proteins -- 9.2.2.Gelsolin Family Proteins -- 9.3.Actin Monomer-Binding Proteins -- 9.3.1.Profilin -- 9.3.2.CAP (Cyclase-Associated-Protein) -- 9.3.3.Twinfilin -- 9.3.4.β-thymosins -- 9.4.Actin Filament Capping Proteins -- 9.4.1.Heterodimeric Capping Protein -- 9.4.2.Eps8 -- 9.4.3.Tropomodulin -- 9.4.4.Other Actin Filament Capping Proteins -- 9.5.Conclusions and Future Prospectives -- References -- 10.From Molecules to Movement: In Vitro Reconstitution of Self-Organized Actin-based Motile Processes / Dominique Pantaloni -- 10.1.Introduction -- 10.2.Actin Assembly Dynamics: From the Simple In Vitro Assays to the Complex Physiological Context -- 10.2.1.Intrinsic Properties of Actin Self-Assembly -- 10.2.2.Regulated Treadmilling -- 10.2.3.Global Inhibition of Actin Assembly Restricts Filament Growth to Specific Sites -- 10.2.4.Reconstitution of Listeria and Shigella Propulsion by Assembly of a Dendritic Branched Filament Array -- 10.2.5.From Listeria to Actin-based Motility Assays Using Chemically and Geometrically Controlled Functionalized Particles -- 10.2.6.Propulsive Movement of Formin-Coated Particles by Processive Assembly of Actin Parallel Bundles -- 10.2.7.Functional Role of Permanent or Transient Links Between the Particle-Immobilized Actin Nucleating Machinery and the Growing Actin Meshwork -- 10.3.Perspectives of Reconstituted Motility Assays -- 10.3.1.Upgrading Motility Assays to a Higher Level of Biological Complexity -- 10.3.2.Structural Analysis and Dynamic Imaging of Reconstituted Motile Actin Arrays -- 10.3.3.Toward Coordinated Actin Dynamics in Cell Movement -- References -- 11.The WASP-Homology 2 Domain and Cytoskeleton Assembly / Roberto Dominguez -- 11.1.Introduction -- 11.2.Filament Nucleation and the W Domain -- 11.3.Tandem W Domain-Based Filament Nucleators -- 11.4.Oligomerization of W-Based Nucleators -- 11.5.Role of the W Domain in Filament Nucleation by NPFs-Arp2/3 Complex -- 11.6.The Arp2/3 Complex and NPFs as a Specialized Form of Tandem W Nucleator -- 11.7.Leiomodin (Lmod) and the Nucleation of Actin Filaments in Muscle Cells -- 11.8.The W Domain and Filament Elongation -- 11.9.Other Functions of the W Domain -- References -- 12.Formin-Mediated Actin Assembly / Bonnie J. Scott -- 12.1.Introduction and Historical Perspective -- 12.1.1.Actin Assembly for Diverse Cellular Processes -- 12.1.2.Formin: Right Name, Wrong Gene? -- 12.1.3.Formin: From "Scaffolding Protein" to Direct Stimulator of Actin Assembly -- 12.2.Domain Organization and Regulation of Formins -- 12.2.1.Autoregulation of the Diaphanous-Related Formins -- 12.2.2.Non-Canonical Formin Regulatory Mechanisms -- 12.3.Formin Actin Assembly Properties and Mechanisms -- 12.3.1.Formin-Mediated Nucleation -- 12.3.2.Formin-Mediated Processive Elongation -- 12.3.3.Physiological Considerations of Formin-Mediated Processive Elongation -- 12.3.4.Structure of the FH2 Domain -- 12.3.5.Mechanism of Processive Elongation by Formin FH2 Domains -- 12.3.6.The FH1 Domain Allows Formin to Utilize Actin Bound to Profilin -- 12.3.7.Energy for Formin-Mediated Processive Elongation -- 12.3.8.Interaction of the Formin FH2 Domain with the Side of Actin Filaments -- 12.3.9.Effect of other Actin-Binding Proteins on Formin-Mediated Actin Assembly -- 12.4.Cellular Roles of Formins -- 12.4.1.Cytokinesis -- 12.4.2.Cell/Tissue Morphogenesis -- 12.4.3.Filopodia/Cell Motility -- 12.4.4.Stress Fibers/Cell Adhesion -- 12.4.5.Polarity -- 12.4.6.Regulation of Microtubule Dynamics by Formins -- 12.4.7.Formins and Disease -- 12.5.Concluding Remarks -- References -- 13.Visualization of Individual Actin Filament Assembly / Emmanuele Helfer -- 13.1.Introduction -- 13.1.1.Light Microscopy As a Complement to Biochemical Assays -- 13.1.2.Principle of T1RFM -- 13.1.3.Instrumental Approaches of TIRFM -- 13.1.4.Optimal Parameters of the TIRF Setup -- 13.1.5.Development of TIRFM Assays -- 13.2.Actin Filaments Assembly Dynamics -- 13.2.1.Assembly of Individual Filament -- and Contents note continued: 13.2.2.Branched Actin Structures Generated by the Arp2/3 Complex -- 13.3.Conclusion and Perspectives -- References -- 14.Movement of Cargo in Bacterial Cytoplasm: Bacterial Actin Dynamics Drives Plasmid Segregation / Dyche Mullins -- 14.1.Filament Architecture and Assembly Dynamics -- 14.2.ParM Assembly Dynamics -- 14.2.1.Fast Spontaneous Nucleation -- 14.2.2.Bidirectional Elongation -- 14.2.3.Dynamic Instability -- 14.3.Harnessing Polymerization for Movement -- 14.4.Using a Brownian Ratchet to Find the Long Axis of a Cell -- 14.5.Insertional Polymerization -- 14.5.1.Segrosome Structure and Function -- 14.5.2.Ring Model -- 14.5.3.Clamp Model -- 14.6.Multiple Roles for Dynamic Instability -- 14.6.1.Plasmid Counting -- 14.6.2.Search and Capture -- 14.6.3.Energetics of ParM-Mediated DNA Segregation -- 14.7.AlfA: DNA Segregation Without Dynamic Instability -- 14.8.Summary and Conclusions -- References -- pt. III Physical Aspects -- 15.Protrusive Forces Generated by Dendritic Actin Networks During Cell Crawling / Daniel A. Fletcher -- 15.1.Introduction to Cell Motility and Dendritic Actin Networks -- 15.1.1.Cell Motility Driven by the Growth of Dendritic Actin Networks -- 15.1.2.Assembly of Dendritic Actin Networks Through In Vitro Reconstitution -- 15.1.3.Open Questions on Force Generation by Dendritic Actin Networks -- 15.2.Models of Force Generation for Dendritic Actin Networks -- 15.2.1.Force-Velocity Relationships in Biology and for Actin Networks -- 15.2.2.Force-Velocity Relationship for a Single Actin Filament -- 15.2.3.Predictions for the Force-Velocity Relationship of Dendritic Actin Networks -- 15.3.Measurements of Force Generation by Dendritic Actin Network Growth -- 15.3.1.Methods for Measuring Force Velocity Relationship for Actin Network Growth -- 15.3.2.Growth Velocity is Loading History Dependent -- 15.3.3.Side-View AFM Reveals that Network Density Increases Against an Increasing Force -- 15.3.4.Loading History Dependence of Actin Networks Exemplifies Emergent Dynamics in Multi-Molecular Systems -- 15.3.5.Feedback Between Network Architecture and Force Generation -- 15.4.Tying in Vitro Measurements to Cell Motility -- 15.4.1.In Vivo Measurements of Protrusive Forces -- 15.4.2.From Dendritic Actin Network Growth to Cell Crawling -- 15.5.Future Directions -- References -- 16.Mathematical and Physical Modeling of Actin Dynamics in Motile Cells / Alex Mogilner -- 16.1.Introduction -- 16.2.Polymerization and Force Generation by Single Filaments -- 16.2.1.Effects of ATP Hydrolysis on Polymerization Dynamics -- 16.2.2.Force Generation by Polymerizing Actin Filaments -- 16.2.3.Barbed-End Tethering -- 16.2.4.Disassembly of Actin Filaments -- 16.3.Structure and Force Generation in Dendritic Actin Networks -- 16.3.1.Force-Velocity Relation -- 16.3.2.Dendritic Network Structure -- 16.3.3.Symmetry Breaking and Hopping of Listeria and Actin-Propelled Beads -- 16.3.4.Spontaneous Waves of F-Actin -- 16.4.Dynamics of Cell Protrusions and the Cell Periphery -- 16.4.1.Filopodia -- 16.4.2.Lamellipodium and Lamellum -- 16.5.Shape and Movements of the Whole Cell -- 16.5.1.Boundary Mechanics Models -- 16.5.2.Actin-based Models -- 16.6.Discussion -- References -- 17.Force Production by Actin Assembly: Simplified Experimental Systems for a Thorough Modeling / J. F. Joanny -- 17.1.Introduction -- 17.2.Force Production by a Single Actin Filament -- 17.2.1.Experiments -- 17.2.2.Theory -- 17.2.3.Actin Polymerization in Stereocilia -- 17.3.Non-contractile Polymerizing Actin Gels and Force Production -- 17.4.Contractile Gels -- 17.4.1.Active Gel Theory -- 17.4.2.Experimental Systems -- 17.4.3.Lamellipodium Motion of Keratocytes -- 17.5.Conclusion -- References.
- Subject(s)
- ISBN
- 9789048193011
904819301X - Note
- AVAILABLE ONLINE TO AUTHORIZED PSU USERS.
- Bibliography Note
- Includes bibliographical references and subject index.
View MARC record | catkey: 6762954