Actions for An introduction to applied statistical thermodynamics
An introduction to applied statistical thermodynamics / Stanley I. Sandler
- Author
- Sandler, Stanley I., 1940-
- Published
- Hoboken, NJ : Wiley, [2011]
- Copyright Date
- ©2011
- Physical Description
- xvi, 341 pages : illustrations ; 26 cm
- Contents
- Machine generated contents note: ch. 1 Introduction to Statistical Thermodynamics -- 1.1.Probabilistic Description -- 1.2.Macroscopic States and Microscopic States -- 1.3.Quantum Mechanical Description of Microstates -- 1.4.The Postulates of Statistical Mechanics -- 1.5.The Boltzmann Energy Distribution -- ch. 2 The Canonical Partition Function -- 2.1.Some Properties of the Canonical Partition Function -- 2.2.Relationship of the Canonical Partition Function to Thermodynamic Properties -- 2.3.Canonical Partition Function for a Molecule with Several Independent Energy Modes -- 2.4.Canonical Partition Function for a Collection of Noninteracting Identical Atoms -- ch. 2 Problems -- ch. 3 The Ideal Monatomic Gas -- 3.1.Canonical Partition Function for the Ideal Monatomic Gas -- 3.2.Identification of β as 1/kT -- 3.3.General Relationships of the Canonical Partition Function to Other Thermodynamic Quantities -- 3.4.The Thermodynamic Properties of the Ideal Monatomic Gas -- 3.5.Energy Fluctuations in the Canonical Ensemble -- 3.6.The Gibbs Entropy Equation -- 3.7.Translational State Degeneracy -- 3.8.Distinguishability, Indistinguishability, and the Gibbs' Paradox -- 3.9.A Classical Mechanics-Quantum Mechanics Comparison: The Maxwell-Boltzmann Distribution of Velocities -- ch. 3 Problems -- ch. 4 The Ideal Diatomic and Polyatomic Gases -- 4.1.The Partition Function for an Ideal Diatomic Gas -- 4.1a.The Translational and Nuclear Partition Functions -- 4.1b.The Rotational Partition Function -- 4.1c.The Vibrational Partition Function -- 4.1d.The Electronic Partition Function -- 4.2.The Thermodynamic Properties of the Ideal Diatomic Gas -- 4.3.The Partition Function for an Ideal Polyatomic Gas -- 4.4.The Thermodynamic Properties of an Ideal Polyatomic Gas -- 4.5.The Heat Capacities of Ideal Gases -- 4.6.Normal Mode Analysis: The Vibrations of a Linear Triatomic Molecule -- ch. 4 Problems -- ch. 5 Chemical Reactions in Ideal Gases -- 5.1.The Nonreacting Ideal Gas Mixture -- 5.2.Partition Function of a Reacting Ideal Chemical Mixture -- 5.3.Three Different Derivations of the Chemical Equilibrium Constant in an Ideal Gas Mixture -- 5.4.Fluctuations in a Chemically Reacting System -- 5.5.The Chemically Reacting Gas Mixture: The General Case -- 5.6.Two Illustrations -- Appendix: The Binomial Expansion -- ch. 5 Problems -- ch. 6 Other Partition Functions -- 6.1.The Microcanonical Ensemble for a Pure Fluid -- 6.2.The Grand Canonical Ensemble for a Pure Fluid -- 6.3.The Isobaric-Isothermal Ensemble -- 6.4.The Restricted Grand or Semi-Grand Canonical Ensemble -- 6.5.Comments on the Use of Different Ensembles -- ch. 6 Problems -- ch. 7 Interacting Molecules in A Gas -- 7.1.The Configuration Integral -- 7.2.Thermodynamic Properties from the Configuration Integral -- 7.3.The Pairwise Additivity Assumption -- 7.4.Mayer Cluster Function and Irreducible Integrals -- 7.5.The Virial Equation of State -- 7.6.Virial Equation of State for Polyatomic Molecules -- 7.7.Thermodynamic Properties from the Virial Equation of State -- 7.8.Derivation of Virial Coefficient Formulae from the Grand Canonical Ensemble -- 7.9.Range of Applicability of the Virial Equation -- ch. 7 Problems -- ch. 8 Intermolecular Potentials and the Evaluation of the Second Virial Coefficient -- 8.1.Interaction Potentials for Spherical Molecules -- 8.2.The Second Virial Coefficient in a Mixture: Interaction Potentials Between Unlike Atoms -- 8.3.Interaction Potentials for Multiatom, Nonspherical Molecules, Proteins, and Colloids -- 8.4.Engineering Applications and Implications of the Virial Equation of State -- ch. 8 Problems -- ch. 9 Monatomic Crystals -- 9.1.The Einstein Model of a Crystal -- 9.2.The Debye Model of a Crystal -- 9.3.Test of the Einstein and Debye Heat Capacity Models for a Crystal -- 9.4.Sublimation Pressure and Enthalpy of Crystals -- 9.5.A Comment on the Third Law of Thermodynamics -- ch. 9 Problems -- ch. 10 Simple Lattice Models for Fluids -- 10.1.Introduction -- 10.2.Development of Equations of State from Lattice Theory -- 10.3.Activity Coefficient Models for Similar-Size Molecules from Lattice Theory -- 10.4.The Flory-Huggins and Other Models for Polymer Systems -- 10.5.The Ising Model -- ch. 10 Problems -- ch. 11 Interacting Molecules in A Dense Fluid. Configurational Distribution Functions -- 11.1.Reduced Spatial Probability Density Functions -- 11.2.Thermodynamic Properties from the Pair Correlation Function -- 11.3.The Pair Correlation Function (Radial Distribution Function) at Low Density -- 11.4.Methods of Determination of the Pair Correlation Function at High Density -- 11.5.Fluctuations in the Number of Particles and the Compressibility Equation -- 11.6.Determination of the Radial Distribution Function of Fluids using Coherent X-ray or Neutron Diffraction -- 11.7.Determination of the Radial Distribution Functions of Molecular Liquids -- 11.8.Determination of the Coordination Number from the Radial Distribution Function -- 11.9.Determination of the Radial Distribution Function of Colloids and Proteins -- ch. 11 Problems -- ch. 12 Integral Equation Theories for the Radial Distribution Function -- 12.1.The Yvon-Born-Green (YBG) Equation -- 12.2.The Kirkwood Superposition Approximation -- 12.3.The Ornstein-Zernike Equation -- 12.4.Closures for the Ornstein-Zernike Equation -- 12.5.The Percus-Yevick Hard-Sphere Equation of State -- 12.6.The Radial Distribution Functions and Thermodynamic Properties of Mixtures -- 12.7.The Potential of Mean Force -- 12.8.Osmotic Pressure and the Potential of Mean Force for Protein and Colloidal Solutions -- ch. 12 Problems -- ch. 13 Determination of the Radial Distribution Function and Fluid Properties by Computer Simulation -- 13.1.Introduction to Molecular Level Computer Simulation -- 13.2.Thermodynamic Properties from Molecular Simulation -- 13.3.Monte Carlo Simulation -- 13.4.Molecular-Dynamics Simulation -- ch. 13 Problems -- ch. 14 Perturbation Theory -- 14.1.Perturbation Theory for the Square-Well Potential -- 14.2.First Order Barker-Henderson Perturbation Theory -- 14.3.Second-Order Perturbation Theory -- 14.4.Perturbation Theory Using Other Reference Potentials -- 14.5.Engineering Applications of Perturbation Theory -- ch. 14 Problems -- ch. 15 A Theory of Dilute Electrolyte Solutions and Ionized Gases -- 15.1.Solutions Containing Ions (and Electrons) -- 15.2.Debye-Huckel Theory -- 15.3.The Mean Ionic Activity Coefficient -- ch. 15 Problems -- ch. 16 The Derivation of Thermodynamic Models from the Generalized Van Der Waals Partition Function -- 16.1.The Statistical-Mechanical Background -- 16.2.Application of the Generalized van der Waals Partition Function to Pure Fluids -- 16.3.Equation of State for Mixtures from the Generalized van der Waals Partition Function -- 16.4.Activity Coefficient Models from the Generalized van der Waals Partition Function -- 16.5.Chain Molecules and Polymers -- 16.6.Hydrogen-Bonding and Associating Fluids -- ch. 16 Problems.
- Subject(s)
- ISBN
- 9780470913475 (pbk.)
0470913479 (pbk.) - Bibliography Note
- Includes bibliographical references and index.
View MARC record | catkey: 6936348