Hormones in neurodegeneration, neuroprotection, and neurogenesis / edited by Achille G. Gravanis and Synthia H. Mellon
- Published:
- Weinheim : Wiley-Blackwell, [2011]
- Copyright Date:
- ©2011
- Physical Description:
- xxvii, 375 pages : illustrations ; 25 cm
- Additional Creators:
- Gravanis, Achille G. and Mellon, Synthia H.
- Contents:
- Machine generated contents note: pt. I Estrogens, Progestins, Allopregnanolone and Neuroprotection -- 1.Interactions of Estradiol and Insulin-like Growth Factor-I in Neuroprotection: Implications for Brain Aging and Neurodegeneration / Inigo Azcoitia -- 1.1.Introduction: Hormones, Brain Aging, and Neurodegeneration -- 1.2.Estradiol, IGF-I, Brain Aging, and Neuroprotection -- 1.3.Molecular Interactions of Estrogen Receptors and IGF-I Receptor in the Brain -- 1.4.Regulation of IGF-I Receptor Signaling by Estradiol in the Brain -- 1.5.Regulation of Estrogen Receptor Transcriptional Activity by IGF-I in Neural Cells -- 1.6.Implications of the Cross Talk between Estrogen Receptors and IGF-I Receptors for Brain Aging, and Neurodegeneration -- Acknowledgment -- References -- 2.Structure-Nongenomic Neuroprotection Relationship of Estrogens and Estrogen-Derived Compounds / Douglas Covey -- 2.1.Introduction -- 2.2.In vitro Assessments of Structure-Neuroprotective Activity Relationships -- 2.2.1.Estradiol and Other Known Estratrienes -- 2.2.2.A-Ring Derivatives -- 2.2.3.B- and C-Ring Derivatives -- 2.2.4.D-Ring Derivatives -- 2.2.5.Correlation between Inhibition of TBARs and Protection against Glutamate and IAA -- 2.2.6.Estrogen Receptor Binding -- 2.2.7.Correlation between Inhibition of TBARs or Neuroprotection and ER Binding -- 2.2.8.Interpretation of In vitro Findings -- 2.3.In vivo Assessment of Structure-Neuroprotective Activity Relationships -- 2.4.In vitro Assessment of Structure-Cell Signaling Relationships -- 2.5.Summary -- Acknowledgment -- References -- 3.Progestins and Neuroprotection: Why the Choice of Progestin Matters / Meharvan Singh -- 3.1.Introduction -- 3.2.The Biology of Progesterone -- 3.3.Membrane-Associated Progesterone Receptors -- 3.4.Progesterone-Induced Protection -- 3.5.Mechanisms Underlying Progesterone's Protective Effects -- 3.6.Medroxyprogesterone Acetate -- Acknowledgments -- References -- 4.Endogenous and Synthetic Neurosteroids in the Treatment of Niemann-Pick Type C Disease / Marcus D. Schonemann -- 4.1.Introduction -- 4.2.Niemann-Pick Type C Disease as a Model of Disrupted Neurosteroidogenesis -- 4.3.Steroidogenesis and Neurosteroidogenesis in NP-C -- 4.4.Treatment of NP-C Mice with Allopregnanolone -- 4.5.Mechanism of Allopregnanolone Action: GABAa Receptor -- 4.6.Mechanism of Allopregnanolone Action: Pregnane - Receptor -- 4.7.Mechanism of Allopregnanolone Action: Reduction of Cellular Oxidative Stress -- 4.8.Conclusions - Mechanisms of Allopregnanolone Action in Treatment of NP-C and Other Neurodegenerative Diseases -- Acknowledgments -- References -- pt. II Glucocorticoids, Dehydroepiandrosterone, Neuroprotection and Neuropathy -- 5.Glucocorticoids, Developmental "Programming," and the Risk of Affective Dysfunction / Jonathan Seckl -- 5.1.Introduction to Programming -- 5.2.Programming -- 5.2.1.Epidemiology -- 5.2.2.Birth Weight and Neuropsychiatric Disorders -- 5.3.Glucocorticoids and Fetal Development -- 5.4.Glucocorticoids: the Endocrine Programming Factor -- 5.4.1.Placental 11β-HSD2: a Barrier to Maternal Glucocorticoids -- 5.4.2.Glucocorticoid Programming -- 5.4.3.Transgenerational Effects -- 5.4.4.The Placenta -- 5.4.5.A Common Mechanism? -- 5.5.Fetal Tissue Glucocorticoid Sensitivity -- 5.6.Stress and Glucocorticoids: Key Programmers of the Brain -- 5.6.1.Programming the HPA Axis -- 5.6.2.Sex-Specific Effects -- 5.6.3.Programming Behavior -- 5.7.CNS Programming Mechanisms -- 5.7.1.The GR Gene: a Common Programming Target? -- 5.7.2.Epigenetics -- 5.8.Glucocorticoid Programming in Humans -- 5.8.1.Clinical Use of Prenatal Glucocorticoid Therapy -- 5.8.2.Consequences of Human Fetal Glucocorticoid Overexposure -- 5.8.3.Programming and Posttraumatic Stress Disorder (PTSD) -- 5.8.4.Programming Other Glucocorticoid Metabolizing Enzymes -- 5.9.Future Perspectives and Therapeutic Opportunities -- 5.10.Overview -- References -- 6.Regulation of Structural Plasticity and Neurogenesis during Stress and Diabetes; Protective Effects of Glucocorticoid Receptor Antagonists / Edo Ronald de Kloet -- 6.1.The Stress Response -- 6.2.HPA Axis and Glucocorticoids -- 6.3.Glucocorticoid Actions -- 6.4.Feedback Regulation -- 6.5.Stress and Depression -- 6.6.Stress-Induced Viability Changes in the Hippocampus: Effect on Function, Volume, Cell Number, and Apoptosis -- 6.7.Effects of Stress on Dendritic Atrophy, Spine, and Synaptic Changes -- 6.8.Adult Hippocampal Neurogenesis -- 6.9.Effect of Stress on Adult Hippocampal Neurogenesis -- 6.10.Normalization of the Effects of Stress on the Hippocampus by Means of GR Blockade -- 6.11.Normalization of Hippocampal Alterations during Diabetes Mellitus Using the GR Antagonist Mifepristone -- 6.12.Concluding Remarks -- Acknowledgments -- Disclosure -- References -- 7.Neuroactive Steroids and Peripheral Neuropathy / Marc J. Tetel -- 7.1.Introduction -- 7.2.Regulation of Neuroactive Steroid Responsiveness in Peripheral Nerves -- 7.2.1.Synthesis and Metabolism of Neuroactive Steroids -- 7.2.2.Classical and Nonclassical Steroid Receptors are Expressed in Peripheral Nerves -- 7.3.Schwann Cell Responses to Neuroactive Steroids -- 7.4.Sexually Dimorphic Changes of Neuroactive Steroid Levels Induced by Pathology in Peripheral Nerves -- 7.5.Neuroactive Steroids as Protective Agents in PNS -- 7.5.1.Aging Process -- 7.5.2.Physical Injury -- 7.5.3.Diabetic Neuropathy -- 7.6.Chemotherapy-Induced Peripheral Neuropathy -- 7.7.Concluding Remarks -- Acknowledgments -- References -- 8.Neuroprotective and Neurogenic Properties of Dehydroepiandrosterone and its Synthetic Analogs / Achille Gravanis -- 8.1.Introduction -- 8.2.Neuroprotective and Neurogenic Effects of DHEA in Hippocampal Neurons -- 8.3.Neuroprotective Effects of DHEA in Nigrostriatal Dopaminergic Neurons -- 8.4.Neuroprotective Effects of DHEA in Autoimmune Neurodegenerative Processes -- 8.5.Neuroprotective Effects of DHEA against Brain Ischemia and Trauma -- 8.6.Signaling Pathways Involved in the Effects of DHEA on Neuronal Cell Fate -- 8.7.Therapeutic Perspectives of DHEA and its Synthetic Analogs in Neurodegenerative Diseases -- References -- 9.Neurosteroids and Pain / Ayikoe G. Mensah-Nyagan -- 9.1.Introduction -- 9.2.General Background on Neurosteroids -- 9.3.Overview on Pain -- 9.4.Involvement of Endogenous Neurosteroids in the Control of Pain -- 9.4.1.Evidence for the Local Production of Neurosteroids in the Spinal Circuit -- 9.4.2.Endogenous Neurosteroids and Pain Modulation -- 9.5.Conclusion -- Acknowledgments -- References -- pt. III Polypeptide Hormones and Neuroprotection -- 10.The Insulin/IGF-1 System in Neurodegeneration and Neurovascular Disease / Lois Smith -- 10.1.Introduction -- 10.2.Insulin and Insulin Growth Factors -- 10.3.Local versus Systemic Actions -- 10.4.Insulin/IGF Signaling Pathway -- 10.5.The Insulin/IGF Axis in the Brain -- 10.6.Insulin/IGF and Neuroprotection -- 10.7.Alzheimer's Disease -- 10.8.Parkinson's Disease -- 10.9.Vascular Dementia -- 10.10.Neurovascular Degeneration -- 10.11.Conclusion -- References -- 11.Leptin Neuroprotection in the Central Nervous System / Jun Chen -- 11.1.Introduction -- 11.1.1.Origin, Source, and Structure of Leptin -- 11.1.2.Functions of Leptin -- 11.1.3.Leptin Receptors -- 11.1.4.Leptin Transport across the Blood-Brain Barrier -- 11.2.Mutation of Leptin or Leptin Receptors -- 11.3.Neurotrophic Role of Leptin -- 11.4.Leptin Neuroprotection against Disorders of the Central Nervous System -- 11.4.1.Acute Neurological Disorders -- 11.4.2.Neurodegenerative Diseases and Other Disorders -- 11.4.3.Leptin Neuroprotective Mechanisms -- 11.5.Significance -- References -- 12.Somatostatin and Neuroprotection in Retina / Kyriaki Thermos -- 12.1.Introduction -- 12.2.Somatostatin and Related Peptides -- 12.3.Somatostatin Receptors and Signaling -- 12.4.Somatostatin and its Receptors in Retina -- 12.5.Localization of Somatostatin Receptors in Retinal Neurons -- 12.5.1.Sst1 -- 12.5.2.Sst2 -- 12.5.3.Sst3 -- 12.5.4.Sst4 -- 12.5.5.Sst5 -- 12.6.Somatostatin Receptor Function in Retinal Circuitry -- 12.6.1.Effects on Glutamate Release -- 12.6.2.Effects on Dopamine Release -- 12.6.3.Effects on Nitric Oxide/GMP -- 12.6.4.Effects on Somatostatin Release -- 12.7.Neuroprotection by Somatostatin Analogs -- 12.7.1.Retinal Ischemia and Excitotoxicity -- 12.7.2.Anti-Ischemic Actions of SRIF -- 12.7.2.1.Ex vivo Studies -- 12.7.2.2.In vivo Studies -- 12.8.Mechanisms of SRIFs Neuroprotection -- 12.8.1.Involvement of NO/cGMP -- 12.8.2.NO/cGMP Mediates SRIF's Neuroprotective Effects -- 12.9.Therapeutic Potential of Somatostatin Agents -- 12.10.Conclusions -- Acknowledgments -- Abbreviations -- References -- 13.Neurotrophic Effects of PACAP in the Cerebellar Cortex / David Vaudry -- 13.1.Expression of PACAP and its Receptors in the Developing Cerebellum -- 13.2.Effects of PACAP on Granule Cell Proliferation -- 13.3.Effects of PACAP on Granule Cell Migration -- 13.4.Effects of PACAP on Granule Cell Survival -- 13.5.Effects of PACAP on Granule Cell Differentiation -- 13.6.Functional Relevance -- Acknowledgments -- References -- 14.The Corticotropin-Releasing Hormone in Neuroprotection / Angela Clement -- 14.1.Introduction -- 14.2.The CRH Family of Proteins and Molecular Signal Transduction -- 14.3.From the Physiology to the Pathophysiology of CRH -- 14.4.CRH and Neurodegenerative Conditions -- 14.5.Protective Activities of CRH -- 14.6.Lessons from the Heart -- 14.7.Outlook -- References -- 15.Neuroprotective and Neurogenic Effects of Erythropoietin / Ahmet Hoke -- 15.1.Introduction -- 15.2.EPO in Models of Neonatal Hypoxic-Ischemic Brain Injury -- 15.3.EPO in Models of Ischemic Stroke in Adults -- 15.4.EPO in Models of Traumatic Brain Injury and Spinal Cord Trauma -- 15.5.EPO in Experimental Autoimmune Encephalomyelitis -- 15.6.EPO in Models of Peripheral Neuropathy -- 15.7.Summary -- References -- pt. IV Hormones and Neurogenesis -- and Contents note continued: 16.Thyroid Hormone Actions on Glioma Cells / Paul J. Davis -- 16.1.Introduction -- 16.2.Origins of Glioma -- 16.3.Glioma Cell Biology -- 16.4.Thyroid Hormone Analogs, Transport, and Metabolism -- 16.5.Thyroid Hormones and Brain Development -- 16.6.Nongenomic Actions of Thyroid Hormones -- 16.7.Hypothyroidism Suppresses Growth of Glioma in Patients -- 16.8.Molecular Mechanisms of Hypothyroidism-Induced Clinical Suppression of Glioma Progression -- 16.8.1.Thyroid Hormone and Proliferation of Tumor Cells -- 16.8.2.Angiogenic Action of Thyroid Hormones -- 16.8.3.Antiapoptotic Action of Thyroid Hormones -- 16.8.4.Tumor Suppression Actions of Tetrac -- 16.9.Future Perspectives -- References -- 17.Gonadal Hormones, Neurosteroids, and Clinical Progestins as Neurogenic Regenerative Agents: Therapeutic Implications / Roberta Diaz Brinton -- 17.1.Introduction -- 17.2.Gonadal Hormones, Neurosteroids, and Neurogenesis -- 17.2.1.Ovarian Hormone Regulation of Adult Neurogenesis -- 17.2.2.Estrogen Regulation of Adult Neurogenesis -- 17.2.3.Progestagen Regulation of Adult Neurogenesis -- 17.2.4.Progesterone Regulation of Adult Neurogenesis -- 17.2.5.Clinical Progestin Regulation of Neurogenesis -- 17.2.6.Androgen Regulation of Adult Neurogenesis -- 17.2.7.Testosterone and DHT Regulation of Adult Neurogenesis -- 17.2.8.DHEA Regulation of Adult Neurogenesis -- 17.3.Neurosteroid Regulation of Adult Neurogenesis -- 17.3.1.Pregnenolone and Pregnenolone Sulfate Regulation of Adult Neurogenesis -- 17.3.2.Allopregnanolone Regulation of Adult Neurogenesis -- 17.4.Gonadal Steroids, Clinical Progestins, and Neurosteroids as Neuroregenerative Therapeutics: Challenges and Strategies -- 17.4.1.Targeting Neurogenesis as a Treatment for Neurodegenerative Disease -- 17.4.2.APα as a Regenerative Factor to Promote Functional Neurogenesis and Diminish Alzheimer's Pathology -- References -- 18.Gonadotropins and Progestogens: Obligatory Developmental Functions during Early Embryogenesis and their Role in Adult Neurogenesis, Neuroregeneration and Neurodegeneration / Sivan Vadakkadath Meethal -- 18.1.Introduction -- 18.2.Hormonal Regulation of Human Embryogenesis -- 18.2.1.The Missing Links -- 18.2.2.Trophoblastic Hormone Secretion -- 18.2.3.Human Embryonic Stem Cells: A Complete Model System for Understanding the Cellular and Molecular Mechanisms Regulating Early Human Embryogenesis -- 18.2.4.Progesterone, Human Chorionic Gonadotropin, and Early Human Embryogenesis -- 18.2.4.1.Regulation of Blastulation by Human Chorionic Gonadotropin and Progesterone -- 18.2.4.2.Regulation of Neurulation by Human Chorionic Gonadotropin and Progesterone -- 18.2.4.3.Regulation of Organogenesis by Human Chorionic Gonadotropin and Progesterone -- 18.2.5.Opioid Signaling and Early Human Embryogenesis -- 18.3.Progesterone: an Essential Neurotrophic Hormone during All Phases of Life -- 18.4.Age-Related Loss of Progesterone: Implications in the Pathophysiology of Neurodegenerative Diseases -- 18.4.1.Alzheimer's Disease -- 18.4.1.1.Amyloid-β Precursor Protein and Neurogenesis -- 18.4.1.2.Hormonal Regulation of Neurogenesis via Modulation of AßPP Metabolism -- 18.4.1.3.Progesterone in the Treatment of AD -- 18.4.2.Stroke -- 18.5.Conclusion -- References -- 19.Human Neural Progenitor Cells: Mitotic and Neurogenic Effects of Growth Factors, Neurosteroids, and Excitatory Amino Acids / Narisorn Kitiyanant -- 19.1.Introduction -- 19.2.Neural Stem/Progenitor Cells as a Model of Human Cortical Development -- 19.3.Mitotic and Neurogenic Effects of a Neurosteroid: Dehydroepiandrosterone (DHEA) -- 19.4.Glutamate Enhances Proliferation and Neurogenesis in hNPCs -- 19.5.Increased Neurogenic "Radial Gliar"-like Cells within Human Neurosphere Cultures -- 19.6.Conclusions -- Acknowledgments -- References -- 20.Corticosterone, Dehydroepiandrosterone, and Neurogenesis in the Adult Hippocampus / Scarlet Bella Pinnock -- 20.1.Background -- 20.2.Glucocorticoids and Neurogenesis in the Adult Hippocampus -- 20.2.1.Regulation by Corticoid Levels -- 20.2.2.Regulation by the Corticoid Diurnal Rhythm -- 20.2.3.Dehydroepiandrosterone (DHEA) -- 20.2.4.Downstream Actions: pCREB and Wnt3a -- 20.2.5.Relevance to Depression -- 20.3.Conclusion.
- Subject(s):
- ISBN:
- 9783527326273 (hbk. : alk. paper)
3527326278 (hbk. : alk. paper) - Bibliography Note:
- Includes bibliographical references and index.
- Source of Acquisition:
- UP-PAT copy: Purchased with funds from the Karl R. and Diane Wendle Fink Libraries Collections Endowment; 2011.
- Endowment Note:
- Karl R. and Diane Wendle Fink Libraries Collections Endowment
View MARC record | catkey: 7071955