Organic chemistry : an acid-base approach / Michael B. Smith
- Author
- Smith, Michael, 1946 October 17-
- Published
- Boca Raton, FL : CRC Press, [2011]
- Copyright Date
- ©2011
- Physical Description
- xvii, 1,574 pages : illustrations (some color) ; 27 cm
- Contents
- Machine generated contents note: ch. 1 Introduction -- 1.1.A Brief History of Organic Chemistry -- 1.2.The Variety and Beauty of Organic Molecules -- ch. 2 Why Is an Acid-Base Theme Important? -- 2.1.Acids and Bases in General Chemistry -- 2.2.Acids and Bases in Organic Chemistry -- 2.3.How Are the Two Acid-Base Definitions Related? -- 2.4.Acid and Base Strength -- 2.5.Lewis Acids and Lewis Bases -- 2.6.Why Is Acid-Base Chemistry a Theme for Organic Chemistry? -- 2.7.Biological Relevance -- ch. 3 Bonding -- 3.1.The Elements -- 3.2.What Is a Chemical Bond? Ionic versus Covalent -- 3.3.The Covalent Carbon-Carbon Bond -- 3.4.Molecular Orbitals -- 3.5.Tetrahedral Carbons and sp3 Hybridization -- 3.6.How Strong Is a Covalent Bond? Bond Dissociation Energy -- 3.7.Polarized Covalent σ-Bonds -- 3.8.Biological Relevance -- ch. 4 Alkanes, Isomers, and an Introduction to Nomenclature -- 4.1.The Fundamental Structure of Alkanes Based on the sp' Hybrid Model -- 4.2.Millions of Hydrocarbons: Alkanes -- 4.3.Combustion Analysis and Empirical Formulas -- 4.4.The Acid or Base Properties of Alkanes -- 4.5.Isomers -- 4.6.Naming Millions of Isomers: Rules of Nomenclature. The IUPAC Rules of Nomenclature -- 4.7.Rings Made of Carbon. Cyclic Compounds -- 4.8.Biological Relevance -- ch. 5 Functional Groups -- 5.1.Introducing a Functional Group: Alkenes -- 5.2.Another Hydrocarbon Functional Group: Alkynes -- 5.3.Hydrocarbons with Several Multiple Bonds -- 5.4.Reactivity of Polarized Covalent σ-Bonds -- 5.5.Formal Charge -- 5.6.Heteroatom Functional Groups -- 5.7.Acid-Base Properties of Functional Groups -- 5.8.Polarity and Intermolecular Forces -- 5.9.Functional Groups with Polarized π-Bonds -- 5.10.Benzene: A Special Cyclic Hydrocarbon -- 5.11.Biological Relevance -- ch. 6 Acids, Bases, Nucleophiles, and Electrophiles -- 6.1.Acid-Base Equilibria -- 6.2.Polarized Hydrogen-Heteroatom Bonds: Acidic Units -- 6.3.Factors That Influence the Strength of a Brønsted-Lowry Acid -- 6.4.Organic Bases -- 6.5.Lewis Acids and Lewis Bases -- 6.6.A Positive Carbon Atom Can Accept Electrons -- 6.7.Nucleophiles -- 6.8.Biological Relevance -- ch. 7 Chemical Reactions, Bond Energy, and Kinetics -- 7.1.A Chemical Reaction -- 7.2.Bond Dissociation Enthalpy and Reactions -- 7.3.Transition States -- 7.4.Reactive Intermediates -- 7.5.Free Energy. Influence of Enthalpy and Entropy -- 7.6.Energetics. Starting Materials, Transition States, Intermediates, and Products on a Reaction Curve -- 7.7.Competing Reactions -- 7.8.Mechanisms -- 7.9.Why Does a Chemical Reaction Occur? Defining a "Reactive" Center -- 7.10.Reversible Chemical Reactions -- 7.11.Kinetics -- 7.12.No Reaction -- 7.13.Biological Relevance -- ch. 8 Rotamers and Conformation -- 8.1.Rotamers -- 8.2.Longer Chain Alkanes: Increased Torsional Strain -- 8.3.Conformations of Alkenes and Alkynes: Introducing π-Bonds -- 8.4.Influence of Heteroatoms on the Rotamer Population -- 8.5.Cyclic Alkanes -- 8.6.Substituted Cyclohexanes -- 8.7.Larger Rings -- 8.8.Cyclic Alkenes -- 8.9.Introducing Heteroatoms into a Ring -- 8.10.Biological Relevance -- ch. 9 Stereoisomers: Chirality, Enantiomers, and Diastereomers -- 9.1.Stereogenic Carbons and Stereoisomers -- 9.2.Specific Rotation: A Physical Property -- 9.3.Absolute Configuration (R and S Nomenclature) -- 9.4.Alkenes -- 9.5.Diastereomers -- 9.6.Stereogenic Centers in Cyclic Molecules -- 9.7.Stereogenic Centers in Complex Molecules -- 9.8.Optical Resolution -- 9.9.Biological Relevance -- ch. 10 Acid-Base Reactions of π-Bonds -- 10.1.Alkenes and Acid-Base Chemistry -- 10.2.Carbocation Intermediates -- 10.3.Alkenes React with Weak Acids in the Presence of an Acid Catalyst -- 10.4.Alkenes React as Lewis Bases -- 10.5.Alkenes React as Lewis Bases with Electrophilic Oxygen. Oxidation of Alkenes to Oxiranes -- 10.6.Alkynes React as Brønsted-Lowry Bases or Lewis Bases -- 10.7.Reactions That Are Not Formally Acid-Base Reactions -- 10.8.Non-ionic Reactions: Radical Intermediates and Alkene Polymerization -- 10.9.Synthetic Transformations -- 10.10.Biological Relevance -- ch. 11 Nucleophiles: Lewis Base-Like Reactions at sp3 Carbon -- 11.1.Alkyl Halides, Sulfonate Esters, and the Electrophilic C-X Bond -- 11.2.Nucleophiles and Bimolecular Substitution (the SN2 Reaction) -- 11.3.Functional Group Transformations via the SN2 Reaction -- 11.4.A Tertiary Halide Reacts with a Nucleophile When the Solvent Is Water -- 11.5.Carbocation Rearrangements -- 11.6.Solvolysis Reactions of Alkyl Halides -- 11.7.Preparation of Halides and Sulfonate Esters by Substitution Reactions -- 11.8.Reactions of Ethers -- 11.9.Free Radical Halogenation of Alkanes -- 11.10.Applications to Synthesis -- 11.11.Biological Relevance -- ch. 12 Base-Induced Elimination Reactions -- 12.1.Bimolecular Elimination -- 12.2.Stereochemical Consequences of the E2 Reaction -- 12.3.The E2 Reaction in Cyclic Molecules -- 12.4.Unimolecular Elimination -- 12.5.Intramolecular Elimination -- 12.6.1, 3 Elimination: Decarboxylation -- 12.7.Elimination Reactions of Vinyl Halides: Formation of Alkynes -- 12.8.Elimination Functional Group Exchanges -- 12.9.Biological Relevance -- ch. 13 Substitution and Elimination Reactions Can Compete -- 13.1.A Few Simplifying Assumptions -- 13.2.Protic versus Aprotic and Water -- 13.3.Nucleophilic Strength versus Base Strength -- 13.4.The Nature of the Halide -- 13.5.What about Secondary Halides? -- 13.6.Strength and Limitations of the Simplifying Assumptions -- 13.7.When Do the Assumptions Fail? -- ch. 14 Spectroscopic Methods of Identification -- 14.1.Light and Energy -- 14.2.Mass Spectrometry -- 14.3.Infrared Spectroscopy -- 14.4.Nuclear Magnetic Resonance Spectroscopy -- 14.5.The Structure of an Unknown Molecule May Be Determined -- 14.6.Carbon-13 NMR Spectroscopy: Counting the Carbons -- 14.7.Biological Relevance -- ch. 15 Organometallic Reagents -- 15.1.Introducing Magnesium into a Molecule -- 15.2.Reaction of Aryl and Vinyl Halides with Magnesium -- 15.3.Grignard Reagents Are Bases -- 15.4.Grignard Reagents Are Poor Nucleophiles with Alkyl Halides -- 15.5.Organolithium Reagents -- 15.6.Organocuprates -- 15.7.Organometallic Disconnections -- 15.8.Biological Relevance -- ch. 16 Carbonyl Compounds: Structure, Nomenclature, Reactivity -- 16.1.The Carbonyl Group -- 16.2.Aldehydes and Ketones. Nomenclature -- 16.3.Chemical Reactivity of Ketones and Aldehydes -- 16.4.Carboxylic Acids. Nomenclature and Properties -- 16.5.Dicarboxylic Acids -- 16.6.Dicarboxylic Acids Have Two pKa Values -- 16.7.Carboxylic Acid Derivatives. Nomenclature and Properties -- 16.8.Acyl Substitution with Carboxylic Acid Derivatives -- 16.9.Sulfonic Acids -- 16.10.Biological Relevance -- ch. 17 Oxidation -- 17.1.Defining an Oxidation -- 17.2.Oxidation of Alcohols with Chromium(VI) -- 17.3.Oxidation of Alkenes -- 17.4.Oxidative Cleavage -- 17.5.Summary of Functional Group Exchanges -- 17.6.Biological Relevance -- ch. 18 Reactions of Aldehydes and Ketones -- 18.1.Chemical Reactivity of the Carbonyl Group -- 18.2.Reversible versus Irreversible Acyl Addition -- 18.3.Reaction of Aldehydes or Ketones with Strong Nucleophiles -- 18.4.Organometallic Reagents Are Nucleophiles -- 18.5.Water: A Weak Nucleophile That Gives Reversible Acyl Addition -- 18.6.Alcohols: Neutral Nucleophiles That Give Reactive Products -- 18.7.Amines Are Nucleophiles That React to Give Imines or Enamines -- 18.8.Carbon-Carbon Bond-Forming Reactions and Functional Group Modification -- 18.9.Biological Relevance -- ch. 19 Reduction -- 19.1.Defining a Reduction -- 19.2.Hydrides as Reducing Agents -- 19.3.Catalytic Hydrogenation -- 19.4.Dissolving Metal Reductions -- 19.5.Summary of Functional Group Exchanges -- 19.6.Biological Relevance -- ch. 20 Carboxylic Acid Derivatives and Acyl Substitution -- 20.1.Chemical Reactivity of Carboxylic Acid Derivatives -- 20.2.Acyl Substitution. Acid Derivatives React with Water: Hydrolysis -- 20.3.Preparation of Acid Chlorides -- 20.4.Preparation of Acid Anhydrides -- 20.5.Preparation of Esters -- 20.6.Amides -- 20.7.The Reaction of Carboxylic Acid Derivatives with Carbon Nucleophiles -- 20.8.Reaction of Organometallics with Other Electrophilic "Carbonyl" Molecules -- 20.9.Dicarboxylic Acid Derivatives -- 20.10.Baeyer-Villiger Oxidation -- 20.11.Sulfonic Acid Derivatives -- 20.12.Sulfate Esters and Phosphate Esters -- 20.13.Nitriles Are Carboxylic Acid Derivatives -- 20.14.Carbon-Carbon Bond-Forming Reactions and Functional Group Exchanges of Acid Derivatives -- 20.15.Biological Relevance -- ch. 21 Aromatic Compounds and Benzene Derivatives -- 21.1.Benzene and Aromaticity -- 21.2.Functionalized Benzene Derivatives and a New Nomenclature System -- 21.3.Electrophilic Aromatic Substitution -- 21.4.Disubstituted Benzene Derivatives -- 21.5.Polysubstituted Benzene Derivatives -- 21.6.Reduction of Aromatic Compounds -- 21.7.Aromaticity in Monocyclic Molecules Other Than Benzene -- 21.8.Polynuclear Aromatic Hydrocarbons -- 21.9.Aromatic Amines and Diazonium Salts -- 21.10.Nucleophilic Aromatic Substitution -- 21.11.Aromatic Disconnections and Functional Group Exchange Reactions -- 21.12.Synthesis of Aromatic Compounds -- 21.13.Biological Relevance -- ch. 22 Enolate Anions: Acyl Addition and Acyl Substitution -- 22.1.Aldehydes and Ketones Are Weak Acids -- 22.2.Enolate Anions Are Nucleophiles. The Aldol Condensation -- 22.3.Non-Nucleophilic Bases -- 22.4.Enolate Anions from Unsymmetrical Ketones -- 22.5.Dehydration of Aldol Products -- 22.6.The Intramolecular Aldol Condensation -- 22.7.Ester Enolates -- 22.8.Decarboxylation -- 22.9.Enolate Alkylation -- 22.10.Phosphorus Ylids and the Wittig Reaction -- 22.11.Many New Synthetic Possibilities -- 22.12.Biological Relevance -- ch. 23 Difunctional Molecules: Dienes and Conjugated Carbonyl Compounds -- 23.1.Conjugated Dienes -- 23.2.Conjugated Carbonyl Compounds -- 23.3.Detecting Conjugation: Ultraviolet Spectroscopy -- and Contents note continued: 23.4.Reactions of Conjugated π-Bonds -- 23.5.Polymers from Conjugated Molecules -- 23.6.Synthetic Possibilities -- 23.7.Biological Relevance -- ch. 24 Difunctional Molecules: Pericyclic Reactions -- 24.1.Frontier Molecular Orbitals: HOMOs and LUMOs -- 24.2.Reactivity of Dienes and Alkenes -- 24.3.Selectivity -- 24.4.Sigmatropic Rearrangements -- 24.5.Review of Synthetic Transformations -- 24.6.Biological Relevance -- ch. 25 Disconnections and Synthesis -- 25.1.What is Synthesis? -- 25.2.Specifying a Starting Material for a Given Target -- 25.3.The Starting Material is Unknown -- 25.4.Disconnection of Molecules with Problematic Structural Features -- ch. 26 Heteroaromatic Compounds -- 26.1.Nitrogen in an Aromatic Ring -- 26.2.Oxygen and Sulfur in an Aromatic Ring -- 26.3.Substitution Reactions in Heterocyclic Aromatic Compounds -- 26.4.Reduced Forms of Heterocycles -- 26.5.Heteroaromatic Compounds with More Than One Ring -- 26.6.Aromatic Substitution Reactions of Polycyclic Heterocycles -- 26.7.Synthesis of Heterocycles -- 26.8.Biological Relevance -- ch. 27 Multifunctional Compounds: Amino Acids and Peptides -- 27.1.A Review of Reactions That Form Amines -- 27.2.Reactions of Amines -- 27.3.Difunctional Molecules: Amino Acids -- 27.4.Biological Relevance. Peptides Are Polyamides of Amino Acid Residues -- 27.5.Biological Relevance. Proteins and Enzymes Are Polypeptides -- 27.6.New Synthetic Methodology -- ch. 28 Multifunctional Compounds: Carbohydrates -- 28.1.Polyhydroxy Carbonyl Compounds -- 28.2.Biological Relevance. Oligosaccharides and Polysaccharides -- 28.3.Reactions of Carbohydrates -- 28.4.Synthesis of Carbohydrates -- 28.5.Biological Relevance. Nucleosides and Nucleotides (Heterocycles Combined with Sugars) -- 28.6.Biological Relevance. Polynucleotides -- 28.7.Synthesis of Polynucleotides.
- Subject(s)
- ISBN
- 9781420079203 (hardcover : alk. paper)
1420079204 (hardcover : alk. paper) - Note
- Includes index.
- Bibliography Note
- Includes bibliographical references and index.
View MARC record | catkey: 7542557