Actions for Multilevel models [electronic resource] : applications using SAS
Multilevel models [electronic resource] : applications using SAS / Jichuan Wang, Haiyi Xie, James H. Fischer
- Author
- Wang, Jichuan
- Uniform Title
- Duo ceng tong ji fen xi mo xing
- Published
- Berlin ; Boston : De Gruyter ; [Beijing] : Higher Education Press, [2012]
- Copyright Date
- ©2012
- Physical Description
- 1 online resource (ix, 264 pages) : illustrations
- Additional Creators
- Xie, Haiyi, Fischer, James H., and Ebooks Corporation
Access Online
- Contents
- Machine generated contents note: 1.Introduction -- 1.1.Conceptual framework of multilevel modeling -- 1.2.Hierarchically structured data -- 1.3.Variables in multilevel data -- 1.4.Analytical problems with multilevel data -- 1.5.Advantages and limitations of multilevel modeling -- 1.6.Computer software for multilevel modeling -- 2.Basics of linear multilevel models -- 2.1.Intraclass correlation coefficient (ICC) -- 2.2.Formulation of two-level multilevel models -- 2.3.Model assumptions -- 2.4.Fixed and random regression coefficients -- 2.5.Cross-level interactions -- 2.6.Measurement centering -- 2.7.Model estimation -- 2.8.Model fit, hypothesis testing, and model comparisons -- 2.8.1.Model fit -- 2.8.2.Hypothesis testing -- 2.8.3.Model comparisons -- 2.9.Explained level-1 and level-2 variances -- 2.10.Steps for building multilevel models -- 2.11.Higher-level multilevel models -- 3.Application of two-level linear multilevel models -- 3.1.Data -- 3.2.Empty model -- 3.3.Predicting between-group variation -- 3.4.Predicting within-group variation -- 3.5.Testing level-1 random -- 3.6.Across-level interactions -- 3.7.Other issues in model development -- 4.Application of multilevel modeling to longitudinal data -- 4.1.Features of longitudinal data -- 4.2.Limitations of traditional approaches for modeling longitudinal data -- 4.3.Advantages of multilevel modeling for longitudinal data -- 4.4.Formulation of growth models -- 4.5.Data and variable description -- 4.6.Linear growth models -- 4.6.1.The shape of average outcome change over time -- 4.6.2.Random intercept growth models -- 4.6.3.Random intercept-slope growth models -- 4.6.4.Intercept and slope as outcomes -- 4.6.5.Controlling for individual background variables in models -- 4.6.6.Coding time score -- 4.6.7.Residual variance/covariance structures -- 4.6.8.Time-varying covariates -- 4.7.Curvilinear growth models -- 4.7.1.Polynomial growth model -- 4.7.2.Dealing with collinearity in higher order polynomial growth model -- 4.7.3.Piecewise (linear spline) growth model -- 5.Multilevel models for discrete outcome measures -- 5.1.Introduction to generalized linear mixed models -- 5.1.1.Generalized linear models -- 5.1.2.Generalized linear mixed models -- 5.2.SAS Procedures for multilevel modeling with discrete outcomes -- 5.3.Multilevel models for binary outcomes -- 5.3.1.Logistic regression models -- 5.3.2.Probit models -- 5.3.3.Unobserved latent variables and observed binary outcome measures -- 5.3.4.Multilevel logistic regression models -- 5.3.5.Application of multilevel logistic regression models -- 5.3.6.Application of multilevel logit models to longitudinal data -- 5.4.Multilevel models for ordinal outcomes -- 5.4.1.Cumulative logit models -- 5.4.2.Multilevel cumulative logit models -- 5.5.Multilevel models for nominal outcomes -- 5.5.1.Multinomial logit models -- 5.5.2.Multilevel multinomial logit models -- 5.5.3.Application of multilevel multinomial logit models -- 5.6.Multilevel models for count outcomes -- 5.6.1.Poisson regression models -- 5.6.2.Poisson regression with over-dispersion and a negative binomial model -- 5.6.3.Multilevel Poisson and negative binomial models -- 5.6.4.Application of multilevel Poisson and negative binomial models -- 6.Other applications of multilevel modeling and related issues -- 6.1.Multilevel zero-inflated models for count data with extra zeros -- 6.1.1.Fixed-effect zero-inflated Poisson (ZIP) model -- 6.1.2.Random effect zero-inflated Poisson (RE-ZIP) models -- 6.1.3.Random effect zero-inflated negative binomial (RE-ZINB) models -- 6.1.4.Application of RE-ZIP and RE-ZINB models -- 6.2.Mixed-effect mixed-distribution models for semi-continuous outcomes -- 6.2.1.Mixed-effect mixed distribution model -- 6.2.2.Application of the mixed-effect mixed distribution model -- 6.3.Bootstrap multilevel modeling -- 6.3.1.Nonparametric residual bootstrap multilevel modeling -- 6.3.2.Parametric residual bootstrap multilevel modeling -- 6.3.3.Application of nonparametric residual bootstrap multilevel modeling -- 6.4.Group-based models for longitudinal data analysis -- 6.4.1.Introduction to group-based trajectory model -- 6.4.2.Group-based logit trajectory model -- 6.4.3.Group-based zero-inflated Poisson (ZIP) trajectory model -- 6.4.4.Group-based censored normal trajectory models -- 6.5.Missing values issue -- 6.5.1.Missing data mechanisms and their implications -- 6.5.2.Handling missing data in longitudinal data analyses -- 6.6.Statistical power and sample size for multilevel modeling -- 6.6.1.Sample size estimation for two-level designs -- 6.6.2.Sample size estimation for longitudinal data analysis.
- Subject(s)
- ISBN
- 3110267705 (electronic bk.)
9783110267709 (electronic bk.) - Note
- Description based on print version record.
AVAILABLE ONLINE TO AUTHORIZED PSU USERS. - Bibliography Note
- Includes bibliographical references and index.
- Reproduction Note
- Electronic reproduction. Perth, W.A. Available via World Wide Web.
- Technical Details
- Mode of access: World Wide Web.
View MARC record | catkey: 8020197