Actions for Ultracold atoms in optical lattices : simulating quantum many-body systems
Ultracold atoms in optical lattices : simulating quantum many-body systems / Maciej Lewenstein, Anna Sanpera and Verònica Ahufiniger
- Author
- Lewenstein, Maciej, 1955-
- Additional Titles
- Simulating quantum many-body systems
- Published
- Oxford, U.K. : Oxford University Press, 2012.
- Edition
- 1st ed.
- Physical Description
- xiv, 479 pages : illustrations ; 26 cm
- Additional Creators
- Sanpera, Anna and Ahufinger, Verònica
- Contents
- Machine generated contents note: 1.Introduction -- 1.1.The third quantum revolution -- 1.2.Cold atoms from a historical perspective -- 1.3.Cold atoms and the challenges of condensed matter physics -- 1.4.Plan of the book -- 2.Statistical physics of condensed matter: basic concepts -- 2.1.Classical phase transitions -- 2.2.Bose-Einstein condensation in non-interacting systems -- 2.3.Quantum phase transitions -- 2.4.One-dimensional systems -- 2.5.Two-dimensional systems -- 3.Ultracold gases in optical lattices: basic concepts -- 3.1.Optical potentials -- 3.2.Control of parameters in cold atom systems -- 3.3.Non-interacting particles in periodic lattices: band structure -- 3.4.Bose-Einstein condensates in optical lattices: weak interacting limit -- 3.5.From weakly interacting to strongly correlated regimes -- 4.Quantum simulators of condensed matter -- 4.1.Quantum simulators -- 4.2.Hubbard models -- 4.3.Spin models and quantum magnetism -- 5.Bose-Hubbard models: methods of treatment -- 5.1.Introduction -- 5.2.Weak interactions limit: the Bogoliubov approach -- 5.3.Strong interactions limit: strong coupling expansion -- 5.4.Perturbative mean-field approach -- 5.5.Gutzwiller approach -- 5.6.Exact diagonalization and the Lanczos method -- 5.7.Quantum Monte Carlo: path integral and worm algorithms -- 5.8.Phase-space methods -- 5.9.Analytic one-dimensional methods -- 5.10.Renormalization approaches in one dimension: DMRG and MPS -- 5.11.Renormalization approaches in two dimension: PEPS, MERA, and TNS -- 6.Fermi and Fermi-Bose Hubbard models: methods of treatment -- 6.1.Introduction -- 6.2.Fermi Hubbard model and BCS theory -- 6.3.Balanced BCS-BEC crossover -- 6.4.Mean-field description of imbalanced BCS-BEC crossover -- 6.5.Fermi Hubbard model and strongly correlated fermions -- 6.6.Hubbard models and effective Hamiltonians -- 6.7.Fermi-Bose Hubbard models -- 7.Ultracold spinor atomic gases -- 7.1.Introduction -- 7.2.Spinor interactions -- 7.3.Spinor Bose-Einstein condensates: mean-field phases -- 7.4.Spin textures and topological defects -- 7.5.Bosonic spinor gases in optical lattices -- 7.6.Spinor Fermi gases -- 8.Ultracold dipolar gases -- 8.1.Introduction -- 8.2.Properties of dipole-dipole interaction -- 8.3.Ultracold dipolar systems -- 8.4.Ultracold trapped dipolar gases -- 8.5.Dipolar gas in a lattice: extended Hubbard models -- 8.6.Dipolar bosons in a 2D optical lattice -- 8.7.Quantum Monte Carlo studies of dipolar gases -- 8.8.Further dipole effects -- 9.Disordered ultracold atomic gases -- 9.1.Introduction -- 9.2.Disorder in condensed matter -- 9.3.Realization of disorder in ultracold atomic gases -- 9.4.Disordered Bose-Einstein condensates -- 9.5.Disordered ultracold fermionic systems -- 9.6.Disordered ultracold Bose-Fermi and Bose-Bose mixtures -- 9.7.Spin glasses -- 9.8.Disorder-induced order -- 10.Frustrated ultracold atom systems -- 10.1.Introduction -- 10.2.Quantum antiferromagnets -- 10.3.Physics of frustrated quantum antiferromagnets -- 10.4.Realization of frustrated models with ultracold atoms -- 11.Ultracold atomic gases in `artificial' gauge fields -- 11.1.Introduction -- 11.2.Ultracold atoms in rapidly rotating microtraps -- 11.3.Gauge symmetry in the lattice -- 11.4.Lattice gases in `artificial' Abelian gauge fields -- 11.5.Lattice gases in `artificial' non-Abelian gauge fields -- 11.6.Integer quantum Hall effect and emergence of Dirac fermions -- 11.7.Fractional quantum Hall effect in non-Abelian fields -- 11.8.Ultracold gases and lattice gauge theories -- 11.9.Generation of `artificial' gauge fields -- 12.Many-body physics from a quantum information perspective -- 12.1.Introduction -- 12.2.Crash course on quantum information -- 12.3.Quantum phase transitions and entanglement -- 12.4.Area laws -- 12.5.The world according to tensor networks -- 13.Quantum information with lattice gases -- 13.1.Introduction -- 13.2.Quantum circuit model in optical lattices -- 13.3.One-way quantum computer with lattice gases -- 13.4.Topological quantum computing in optical lattices -- 13.5.Distributed quantum information -- 14.Detection of quantum systems realized with ultracold atoms -- 14.1.Introduction -- 14.2.Time of flight: first-order correlations -- 14.3.Time of flight and noise correlations: higher-order correlations -- 14.4.Bragg spectroscopy -- 14.5.Optical Bragg diffraction -- 14.6.Single-atom detectors -- 14.7.Quantum polarization spectroscopy -- 15.Perspectives: beyond standard optical lattices -- 15.1.Introduction -- 15.2.Beyond standard optical lattices: new trends -- 15.3.Standard optical lattices: what's new?.
- Subject(s)
- ISBN
- 9780199573127
0199573123 - Bibliography Note
- Includes bibliographical references (pages [439]-470) and index.
View MARC record | catkey: 8394303