Actions for Digital color imaging
Digital color imaging / edited by Christine Fernandez-Maloine, Frédérique Robert-Inacio, [and] Ludovic Macaire
- Published
- London, UK : ISTE Ltd. ; Hoboken, NJ : John Wiley & Sons, 2012.
- Physical Description
- xiv, 352 pages : illustrations ; 24 cm.
- Additional Creators
- Fernández-Maloigne, Christine, Robert-Inacio, Frédérique, and Macaire, Ludovic
- Series
- Contents
- Machine generated contents note: ch. 1 Color Representation and Processing in Polar Color Spaces / Olivier Lezoray -- 1.1.Introduction -- 1.1.1.Notations used in this chapter -- 1.2.The HSI triplet -- 1.2.1.Intuitive approach: basic concepts and state of the art -- 1.2.2.Geometric approach: calculation of polar coordinates -- 1.3.Processing of hue: a variable on the unit circle -- 1.3.1.Can hue be represented as a scalar? -- 1.3.2.Ordering based on distance from a reference hue -- 1.3.3.Ordering with multiple references -- 1.3.4.Determination of reference hues -- 1.4.Color morphological filtering in the HSI space -- 1.4.1.Chromatic and achromatic top-hat transforms -- 1.4.2.Full ordering using lexicographical cascades -- 1.5.Morphological color segmentation in the HSI space -- 1.5.1.Color distances and segmentation by connective criteria -- 1.5.2.Color gradients and watershed segmentation -- 1.6.Conclusion -- 1.7.Bibliography -- ch. 2 Adaptive Median Color Filtering / Eric Dinet -- 2.1.Introduction -- 2.2.Noise -- 2.2.1.Sources of noise -- 2.2.2.Noise modeling -- 2.3.Nonlinear filtering -- 2.3.1.Vector methods -- 2.3.2.Median filter using bit mixing -- 2.4.Median filter: methods derived from vector methods -- 2.4.1.Vector filtering -- 2.4.2.Switching vector and peer group filters -- 2.4.3.Hybrid switching vector filter -- 2.4.4.Fuzzy filters -- 2.5.Adaptive filters -- 2.5.1.Spatially adaptive filter: generic method -- 2.5.2.Spatially adaptive median filter -- 2.6.Performance comparison -- 2.6.1.FSVF -- 2.6.2.FRF -- 2.6.3.PGF and FMPGF -- 2.6.4.IPGSVF -- 2.6.5.Vector filters and spatially adaptive median filter -- 2.7.Conclusion -- 2.8.Bibliography -- ch. 3 Anisotropic Diffusion PDEs for Regularization of Multichannel Images: Formalisms and Applications / David Tschumperle -- 3.1.Introduction -- 3.2.Preliminary concepts -- 3.3.Local geometry in multi-channel images -- 3.3.1.Which geometric characteristics? -- 3.3.2.Geometry estimated using a scalar characteristic -- 3.3.3.Di Zenzo multi-valued geometry -- 3.4.PDEs for multi-channel image smoothing: overview -- 3.4.1.Variational methods -- 3.4.2.Divergence PDEs -- 3.4.3.Oriented Laplacian PDEs -- 3.4.4.Trace PDEs -- 3.5.Regularization and curvature preservation -- 3.5.1.Single smoothing direction -- 3.5.2.Analogy with line integral convolutions -- 3.5.3.Extension to multi-directional smoothing -- 3.6.Numerical implementation -- 3.7.Some applications -- 3.8.Conclusion -- 3.9.Bibliography -- ch. 4 Linear Prediction in Spaces with Separate Achromatic and Chromatic Information / Christine Fernandez-Maloigne -- 4.1.Introduction -- 4.2.Complex vector 2D linear prediction -- 4.3.Spectral analysis in the IHLS and L*a*b* color spaces -- 4.3.1.Comparison of PSD estimation methods -- 4.3.2.Study of inter-channel interference associated with color space changing transformations -- 4.4.Application to segmentation of textured color images -- 4.4.1.Prediction error distribution -- 4.4.2.Label field estimation -- 4.4.3.Experiments and results -- 4.5.Conclusion -- 4.6.Bibliography -- ch. 5 Region Segmentation / Ludovic Macaire -- 5.1.Introduction -- 5.2.Compact histograms -- 5.2.1.Classical multi-dimensional histogram -- 5.2.2.Compact multi-dimensional histogram -- 5.2.3.Pixel classification through compact histogram analysis -- 5.3.Spatio-colorimetric classification -- 5.3.1.Introduction -- 5.3.2.Joint analysis -- 5.3.3.Successive analysis -- 5.3.4.Conclusion -- 5.4.Segmentation by graph analysis -- 5.4.1.Graphs and color images -- 5.4.2.Semi-supervised classification using graphs -- 5.4.3.Spectral classification applied to color image segmentation -- 5.5.Evaluation of segmentation methods against a "ground truth" -- 5.6.Conclusion -- 5.7.Bibliography -- ch. 6 Color Texture Attributes / Imtnan Qazi -- 6.1.Introduction -- 6.1.1.Concept of color texture -- 6.1.2.Color texture feature specificities -- 6.1.3.Image databases -- 6.1.4.Applications involving color texture characterization -- 6.2.Statistical features -- 6.2.1.Statistical features describing color distribution -- 6.2.2.Second-order statistical features -- 6.2.3.Higher-order statistical features -- 6.2.4.Conclusion -- 6.3.Spatio-frequential features -- 6.3.1.Gabor transform -- 6.3.2.Wavelet transform -- 6.4.Stochastic modeling -- 6.4.1.Markov fields -- 6.4.2.Linear prediction models -- 6.5.Color texture classification -- 6.5.1.Color and texture approaches -- 6.5.2.Color texture and choice of color space -- 6.5.3.Experimental results -- 6.6.Conclusion -- 6.7.Bibliography -- ch. 7 Photometric Color Invariants for Object Recognition / Damien Muselet -- 7.1.Introduction -- 7.1.1.Object recognition -- 7.1.2.Compromise between discriminating power and invariance -- 7.1.3.Content of this chapter -- 7.2.Basic assumptions -- 7.2.1.Hypotheses on color formation -- 7.2.2.Assumptions on the reflective properties of surface elements -- 7.2.3.Assumptions on camera sensor responses -- 7.2.4.Assumptions on the characteristics of the illumination -- 7.2.5.Hypotheses of the photometric and radiometric variation model -- 7.3.Color invariant characteristics -- 7.3.1.Inter- and intra-component color ratios -- 7.3.2.Transformations based on analysis of colorimetric distributions -- 7.3.3.Invariant derivatives -- 7.4.Conclusion -- 7.5.Bibliography -- ch. 8 Color Key Point Detectors and Local Color Descriptors / Xiaohu Song -- 8.1.Introduction -- 8.2.Color key point and region detectors -- 8.2.1.Detector quality criteria -- 8.2.2.Color key points -- 8.2.3.Color key regions -- 8.2.4.Simulation of human visual system -- 8.2.5.Learning for detection -- 8.3.Local color descriptors -- 8.3.1.Concatenation of two types of descriptors -- 8.3.2.Two successive stages for image comparison -- 8.3.3.Parallel comparisons -- 8.3.4.Spatio-colorimetric descriptors -- 8.4.Conclusion -- 8.5.Bibliography -- ch. 9 Motion Estimation in Color Image Sequences / Jenny Benois-Pineau -- 9.1.Introduction -- 9.2.Extension of classical motion estimation techniques to color image spaces -- 9.2.1.Luminance images and optical flow -- 9.2.2.Estimation of optical flow in color spaces -- 9.3.Apparent motion and vector images -- 9.3.1.Motion and structure tensor in the scalar case -- 9.3.2.Stability of tensor spectral directions -- 9.3.3.Vector approach to optical flow -- 9.4.Conclusion -- 9.5.Bibliography -- Appendix A Appendix to Chapter 7: Summary of Hypotheses and Color Characteristic Invariances -- A.1.Bibliography.
- Subject(s)
- ISBN
- 9781848213470 (hardback)
1848213476 (hardback) - Bibliography Note
- Includes bibliographical references and index.
View MARC record | catkey: 8519553